
 

 

 

Bachelor of Science 

(B.Sc.) 

 

Differential Equations 

 

Semester-III 

 

Author- Dr.Manvender Mishra 

 

 

SURESH GYAN VIHAR UNIVERSITY 

Centre for Distance and Online Education 

Mahal, Jagatpura, Jaipur-302017 

 



Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046

Tel.: (011) 28520627  |   Ph.: 9205476295

Email: info@sbprakashan.com  |   Web.: www.sbprakashan.com

© SGVU

All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information 
retrieval system) or reproduced on any disc, tape, perforated media or other information 
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this, 
some errors might have crept in. Any mistake, error or discrepancy noted may be brought 
to our notice and it shall be taken care of in the next edition. It is notified that neither the 
publishers nor the author or seller will be responsible for any damage or loss of any kind, 
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this 
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Ltd.

Printed at :

Dr (Prof.) T.K. Jain
Director, CDOE, SGVU

Dr. Dev Brat Gupta
Associate Professor (SILS) & Academic 
Head, CDOE, SGVU 

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU

Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU

Dr. Manish Dwivedi
Associate Professor & Dy, Director, 
CDOE, SGVU

Mr. Manvendra Narayan Mishra
Assistant Professor (Deptt. of Mathematics) 
SGVU

Mr. Ashphaq Ahmad

EDITORIAL BOARD (CDOE, SGVU)

Assistant Professor, CDOE, SGVU



Contents

1 Introduction 1
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Equations Associated with Primitives . . . . . . . 3
1.3 Solution of First Order Equations . . . . . . . . . . 4
1.4 Initial Value Problems . . . . . . . . . . . . . . . . 12
1.5 Mathematical Models; Direction Fields . . . . . . . 13

2 Solutions of Differential Equations 27
2.1 Solutions of Differential Equations . . . . . . . . . 27

3 First Order Linear Equations 37
3.1 Linear Equations . . . . . . . . . . . . . . . . . . . 37
3.2 Method of Variation of Parameters . . . . . . . . . 52
3.3 Bernoulli’s Equation . . . . . . . . . . . . . . . . . 56

4 Separable Equations 61
4.1 Solving Separable Equations . . . . . . . . . . . . . 62

4.1.1 Exercises Set A . . . . . . . . . . . . . . . . 84
4.2 By Substitution . . . . . . . . . . . . . . . . . . . . 89
4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . 91

iii



iv CONTENTS

4.4 Homogeneous Equation . . . . . . . . . . . . . . . 92
4.5 via Reducing to Homogeneous Equation . . . . . . 97

5 Linear and Nonlinear Equations 100
5.1 Linear and Nonlinear Equations . . . . . . . . . . . 100

6 Exact Differential Equations 116
6.1 Exact Differential Equations . . . . . . . . . . . . . 116
6.2 Integrating factors . . . . . . . . . . . . . . . . . . 129

7 Picard’s Iteration Method 138
7.1 Existence and Uniqueness of Solutions . . . . . . . 138

8 Equations of Second Order 150
8.1 Equations of Second Order . . . . . . . . . . . . . 150

9 Wronskian 160
9.1 Linear Homogeneous Equations . . . . . . . . . . . 161

10 With Constant Coefficients 176
10.1 With Constant Coefficients . . . . . . . . . . . . . 177

10.1.1 Case 1 Two distinct real roots λ1 and λ2 . 178
10.1.2 Case 2 Double Root . . . . . . . . . . . . . 178
10.1.3 Case 3 Complex Roots . . . . . . . . . . . 180
10.1.4 Exercises . . . . . . . . . . . . . . . . . . . 186

11 Reducing to First Order 189
11.0.5 Exercises . . . . . . . . . . . . . . . . . . . 194

12 Euler-Cauchy Equation 195

13 Nonhomogeneous Equation 202

14 Method of Undetermined Coefficients 205
14.1 Method of Undetermined Coefficients . . . . . . . . 205



CONTENTS v

15 Method of Variation of Parameters 232

16 Series Solutions 243
16.1 Series Solutions . . . . . . . . . . . . . . . . . . . . 243
16.2 Series Solutions . . . . . . . . . . . . . . . . . . . . 259

17 Laplace Transforms 268
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . 268
17.2 The Laplace Transform . . . . . . . . . . . . . . . 271
17.3 Inverse Laplace transform . . . . . . . . . . . . . . 287

18 Derivatives and Integrals 297
18.1 Solution of Initial Value Problems . . . . . . . . . 297

18.1.1 Laplace Transforms of Derivatives . . . . . 297
18.1.2 Solution of Initial Value Problems . . . . . 303

18.2 Integral of a Function . . . . . . . . . . . . . . . . 311

19 Unit Step and Impulse Functions 317
19.1 First Shifting Theorem . . . . . . . . . . . . . . . . 328
19.2 Dirac’s Delta Function . . . . . . . . . . . . . . . . 343

20 Differentiation and Integration 352
20.1 Differentiation of Transforms . . . . . . . . . . . . 352
20.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . 358

20.2.1 Answers . . . . . . . . . . . . . . . . . . . . 358
20.3 Integration of Transforms . . . . . . . . . . . . . . 358

21 Convolution and Integral Equations 363
21.1 Convolution and Integral Equations . . . . . . . . 363

22 Two Point Boundary Value Problems 381
22.1 Two Point Boundary Value Problems . . . . . . . . 381
22.2 Eigen Value Problems . . . . . . . . . . . . . . . . 385



23 Fourier Series 394
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 394
23.2 Periodic Functions . . . . . . . . . . . . . . . . . . 395
23.3 Trigonometric Series . . . . . . . . . . . . . . . . . 398
23.4 Fourier series of 2π periodic function . . . . . . . . 407
23.5 over any Interval of Length 2π . . . . . . . . . . . 417
23.6 Determination of Euler coefficients . . . . . . . . . 429

23.6.1 Evaluation of Euler Coefficients . . . . . . . 430

24 Even and Odd Functions 434
24.1 Even and Odd Functions . . . . . . . . . . . . . . . 435
24.2 Fourier Cosine Series . . . . . . . . . . . . . . . . . 438
24.3 Fourier Sine Series . . . . . . . . . . . . . . . . . . 440
24.4 Fourier Sine and Cosine Series . . . . . . . . . . . 443
24.5 Fourier Sine Series . . . . . . . . . . . . . . . . . . 451

25 Even and Odd Extensions 458
25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 458
25.2 Half Range Series . . . . . . . . . . . . . . . . . . . 469

26 P.D.E. - A Quick Review 477
26.1 Partial Differential Equations . . . . . . . . . . . . 477
26.2 Relation to O.D.E. . . . . . . . . . . . . . . . . . . 480
26.3 Separation of Variables . . . . . . . . . . . . . . . . 485

27 The Heat Equation 490
27.1 Heat Conduction Equation . . . . . . . . . . . . . 490

28 Vibrating String-Wave Equation 507
28.1 Vibrating String-Wave Equation . . . . . . . . . . 507

Syllabus 529



Chapter 1
Introduction to Differential

Equations

Many of the general laws of nature – in physics, chemistry,

biology, and astronomy – find their most natural expression in the

language of differential equations. In this chapter we introduce

differential equations. We also describe mathematical modeling,

direction fields and solution of the differential equations.

1.1 Definitions

• An equation involving one dependent variable and its deriva-

tives with respect to one or more independent variables is

called differential equation.

1
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• A differential equation involving only one independent vari-

able, and hence only ordinary derivatives, is called ordinary

differential equation (O. D. E.).

• A differential equation involving more than one independent

variable, and hence partial derivatives, is called partial dif-

ferential equation (P. D. E.).

• The order of a differential equation is the order of highest

derivative occurring in it.

• The degree of a differential equation is the degree of the

highest derivative occurs in it, after the differential equa-

tion has been cleared of radicals so far as derivatives are

concerned.

Example 1 Determine the order and degree of the following

differential equations. Also identify the partial differential equa-

tions.

1. dy
dt = cos t

2. (3x+ 2y) dy
dx+

(
7x2 − y

)
=

0

3. y′′ + 9y = 0

4. y
(

dy
dx

)2
+ 2x = 0

5. d2y
dt2

−
[
1 +

(
dy
dt

)2
] 3

2

= 0

6. y
(

dy
dx

)2
+ 2x dy

dx − y = 0

7. t3y′′′ y′+2ety′′ = (t2+2)y2

8. ∂2z
∂x2 + ∂2z

∂y2 = 0

9. y ∂u
∂x − x∂u

∂y − z2 ∂u
∂y = 0

10. ∂z
∂x + ∂z

∂y = k z.
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Answer:

Order Degree Order Degree

1 1 1 6 1 2

2 1 1 7 3 1

3 2 1 8 2 1

4 1 2 9 1 1

5 2 2 10 1 1
Also, differential equations given in 8, 9 and 10 are partial

differential equations.

1.2 Differential Equations Associated with

Primitives

We recall that primitive is a relation or equation between the

variables which involves arbitrary constants.

Example 2 Obtain the differential equation associated with the

primitive y = At2 +Bt+ C.

Solution

The given is a primitive with three arbitrary constants. We find a

differential equation that has no arbitrary constants.

Differentiating the given primitive successively, we get

dy

dt
= 2At+B,

d2y

dt2
= 2A,

d3y

dt3
= 0.

Hence, d3y
dt3

= 0 is the differential equation corresponding to the
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given primitive.

Example 3 Show that the differential equation of all parabolas

having x -axis as the axis of symmetry is y
(

d2y
dx2

)
+
(

dy
dx

)2
= 0.

Solution

Let the equation of a parabola having the x-axis as the axis of

symmetry be

y2 = a(x+ b).

Differentiating we get

2y
dy

dx
= a;

and differentiating once again we get

y

(
d2y

dx2

)
+
(
dy

dx

)2

= 0

and is the differential equation representing the parabolas having

x-axis as the axis of symmetry.

1.3 Solution of First Order Ordinary Dif-

ferential Equations

Explicit and Implicit Solutions

Definition A function y = g(t) is called a solution of a given

first order differential equation on some interval, say, a <t<b

(perhaps infinite) if g(t) is defined and differentiable throughout

that interval and is such that the equation becomes an identity

when y and y′ are replaced by g and g′, respectively.
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Example 4 The function y = g(t) = e2t is a solution of the first

order differential equation

dy

dt
= 2y for all t

because by differentiating we obtain

dg

dt
= 2e2t

and when y and y′ are replaced by g and g′ , respectively, we see

that the equation
dy

dt
= 2y

reduces to the identity

2e2t = 2e2t.

• Solution given in the form y = g(t) as in the Definition above

is called explicit solution. i.e., y = g(t) = e2t is an explicit

solution of the differential equation y′ =2y.

• Some times a solution of a differential equation will

appear as an implicit function, i.e., implicitly given in the

form G(t, y) = 0; then it is called implicit solution.

Example 5 t2 + y2 − 1 = 0 (y > 0) is an implicit solution of the

differential equation

y
dy

dt
= −t
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on the interval −1 < t < 1, as differentiating t2 + y2 − 1 = 0 with

respect to t and a rearrangement gives yy′ = −t.

General Solution and Particular Solutions

Definitions The solution of a first order ordinary differential

equation, which contains one arbitrary constant (say c, which can

take infinitely many values) is called the general solution. A

solution obtainable from the general solution by giving particular

value to the arbitrary constant c is called a particular solution.

The geometrical representation of the general solution is an

infinite family of curves called integral curves. Each integral

curve is associated with a particular value of c and is the graph of

the solution corresponding to that value of c.

Example 6 y = sin t+c, where c as arbitrary, is a general solution

of the differential equation

dy

dt
= cos t

Each of the functions

y = sin t, y = sin t+ 3, y = sin t− 3
5
, y = sin t− 4

√
7

is a (particular) solution of the given differential equation.

The geometrical representation of the general solution y = sin t+c

is given in Fig. 1.1. It represents an infinite family of curves

(called integral curves). We note that only some of the curves

are displayed in Fig. 1.1.
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Figure 1.1:

Example 7 y = cet is a general solution and y = −7
2e

t is a

particular solution of the differential equation dy
dt = y.

The number of arbitrary constants depends on the order of

the differential equation. If a differential equation is of order 2, its

general solution would have two arbitrary constants. For example,

we will see in a later chapter that the second order differential

equation
d2y

dt2
+ 25y = 0

has the general solution

y = A sin 5t+B cos 5t

where A and B are arbitrary constants. We also note that a

particular solution of the differential equation is

y = 3 sin 5t−
√

2 cos 5t.
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Singular Solutions

Definition (Singular solution) In some cases, there may be fur-

ther solutions of a given differential equation, which cannot be

obtained by assigning a definite value to the arbitrary constant in

the general solution. Such a solution is called a singular solution

of the differential equation.

Example 8 The differential equation

(y′)2 − xy′ + y = 0

has the general solution y = cx − c2, representing a family of

straight lines, where each line corresponds to a definite value of c.

A further a solution (that cannot be obtainable from the general

solution and hence called singular solution) is y = x2

4 , representing

a parabola. In this example, it can be seen that each particular

solution represents a tangent to the parabola represented by the

singular solution (Fig. 1.2).

Example 9 Solve the differential equation

dp

dt
= 0.5p− 450. (1.1)

Also give a particular solution.

Solution

To solve Eq. (1.1) we need to find functions p(t) that, when

substituted into the equation, gives an identity. First, rewrite Eq.
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Figure 1.2: Singular solution and particular solutions of the differen-
tial equation (y′)2 − xy′ + y = 0.

(1.1) in the form
dp

dt
=
p− 900

2
. (1.2)

Obviously p = 900 is a solution. To find other solutions, we note

that if p 6= 900, Eq.(1.2) becomes

dp/dt

p− 900
=

1
2
. (1.3)

Letting u = ln |p− 100|, and using the chain rule

du

dt
=
du

dp
· dp
dt
,

we have
d

dt
ln |p− 100| = 1

p− 100
dp

dt
.
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Hence Eq. (1.3) becomes

d

dt
ln |p− 900| = 1

2
. (1.4)

Then, integrating both sides of Eq.(1.4), we obtain

ln |p− 900| = t

2
+ C (1.5)

where C is an arbitrary constant of integration. Noting that

eln x = x for x > 0, and by taking the exponential of both sides of

Eq.(1.5), we find that

|p− 900| = e(t/2)+C = eCet/2

or

p− 900 = ±eCet/2

or

p = 900 + c et/2 (1.6)

where c = ±eC is also an arbitrary (nonzero) constant.

Attention! The solution p = 900 is a not a particular solution of

(1.6), since c is a nonzero arbitrary constant. The solution p = 900

can be included in the general solution if we take

p = 900 + c et/2

where c is an arbitrary constant.
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Example 10 Solve the differential equation

dv

dt
= 9.8− v

5
.

Solution

The given differential equation can be written as

dv

dt
= −1

5
(v − 49).

Obviously v = 49 is a solution. To find other solutions, we note

that if v 6= 49,
dv/dt

v − 49
= −1

5
.

Letting u = ln |v − 49|, and using the chain rule du
dt = du

dv
dv
dt , we

have
d

dt
ln |v − 49| = 1

v − 49
· dv
dt
.

Hence the given equation takes the form

d

dt
ln |v − 49| = −1

5
.

Integrating both sides, we obtain

ln |v − 49| = − t
5

+ C
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Noting that eln x = x for x > 0, the above gives

|v − 49| = e−
t
5+C

or

v − 49 = ± eCe−t/5

or

v = 49 + ce−t/5,

where c = ±eC is an arbitrary (non zero) constant. If we allow c

to take 0 also; then v = 49 + ce−t/5 includes all solutions.

1.4 Initial Value Problems

In many problems in Engineering or Physics one is not interested

in the general solution of a given differential equation, but only

in the particular solution y(t) satisfying a given initial condition,

say, the condition that at some point t0, the solution y(t) has a

prescribed value y0, viz., y(t0) = y0. Mathematically, an initial

value problem (I.V.P.) of the first order differential equation is

of the following form:

y′ = f(t, y), with the initial condition y(t0)= y0.

The solution to the initial value problem is unique, and it

is the particular solution of the differential equation that satisfies

the initial condition.
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Example 11

y′ = cos t; y(0) = 1

is an initial value problem. We have seen in Example 6 that

y = sin t+ c

is a general solution of y′ = cos t. Now, using the initial condition

that y(0) =1, i.e., y = 1 when t = 0, the general solution becomes

1 = sin0 + c, or 1 = 0 + c or c = 0.

Hence the particular solution that satisfies the initial condition is

given by

y = sin t+ 1

and is the unique solution of the initial value problem.

Attention! Existence and uniqueness of solution of the initial

value problem is guaranteed by the Existence and Uniqueness The-

orem and the same will be discussed in a coming chapter (with

f(t, y) = cos t.)

1.5 Mathematical Models; Direction Fields

Most of the problems arising in Geometry, Physics or Engineer-

ing can be expressed in the form of differential equations. A dif-

ferential equation that describes some physical process is often

called a mathematical model of that process. Mathematical

Modeling is the setting up of a mathematical model, i.e., for-
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mulating the problems of geometrical or physical type into math-

ematical terms by means of a differential equation, then finding

general solution to the differential equation following which par-

ticular solution is found out.

Example 12 (Geometrical problem) A curve is defined by the

condition that at each of its points (t, y), its slope is equal to

five times the abscissa of the point. Express this in terms of a

differential equation.

Solution

It is given that the slope dy
dt is equal to 5t. Hence the required

differential equation is dy
dt = 5t.

Example 13 (Physical problem) A particle of mass m moves along

the y-axis while subject to a force proportional to its displacement

y from a fixed point O in its path and directed toward O. Express

the condition by means of a differential equation.

Solution

Here force is given by –ky, where k is the proportionality con-

stant (−sign denotes the fact that the force acts in a direction

opposite to the displacement).

Hence from the equation

mass x acceleration = Force,

we obtain the desired differential equation as

m
d2y

dt2
= −ky,

since the acceleration is given by d2y
dt2
.
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Example 14 (A Falling Object) Suppose that an object is

falling in the atmosphere near sea level. Formulate a differential

equation that describes the motion.

Solution

1. We use m to denote mass of the object, t to denote time,

and v to represent the velocity of the falling object. We

measure m in kilograms, time t in seconds and velocity v in

meters/second.

2. Since velocity changes with time, we think of v as a function

of t ; in other words, t is the independent variable and v is

the dependent variable. v is taken to be positive in the

downward direction-that is, when the object is falling.

3. By Newton’s second law, the mass of the falling object times

its acceleration is equal to the net force on the falling object.

i.e.,

F = ma (1.7)

where m is the mass of the falling object, a is its acceleration,

and F is the net force exerted on the object. We measure a

in meters/second2, and F in Newtons. a is related to v by

a =
dv

dt
,
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so we can rewrite Eq.(1.7) in the form

F = m
dv

dt
. (1.8)

Figure 1.3:

The forces that act on the object as it falls are as follows:

1. Gravity exerts a force equal to the weight of the object, or

mg, where g is the acceleration due to gravity (g is approxi-

mately equal to 9.8 m/s2 near the earth’s surface.)

2. A force due to air resistance, or drag, that is proportional

to the velocity, and has the magnitude γv, where γ is a

constant called the drag coefficient (The physical units for γ

are mass/time, or kg/s for this problem).

Before writing an expression for the net force F, we note that

gravity always acts in the downward (positive) direction, whereas
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drag acts in the upward (negative) direction. Thus

F = mg − γv (1.9)

and Eq.(1.9) then becomes

m
dv

dt
= mg − γv (1.10)

Eq.(1.10) is a mathematical model of an object falling in the

atmosphere near sea level.

Remark The model in the previous example contains the three

constants m, g, and γ; the constants m and γ depend on the

particular object that is falling and they are usually different for

different objects; g is a physical constant, whose value is the same

for all objects.

Example 15 Formulate a differential equation that describes the

motion of an object falling in the atmosphere near sea level. Given

m = 5 kg and γ = 2.5kg/s.

Solution

Proceeding as in the previous example, we obtain Eq.(1.10).

Substituting m = 5 kg and γ = 2.5 kg/s in Eq. (1.10) and then

on simplification, we obtain

dv

dt
= 9.8− v

2
. (1.11)

Example 16 (Field Mice and Owls) Consider a population of

field mice who inhabit a certain rural area.
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(a) In the absence of predators we assume that the mouse popu-

lation increases at a rate proportional to the current population.

Set up a mathematical model denoting time by t months and pop-

ulation by p(t).

(b) Write the differential equation if the proportionality constant

is 0.5 per month in (a) above.

(c) In addition to the problem in (b), suppose that several owls

live in the same area and that they kill 15 field mice per day. Write

the differential equation modeling this problem.

Solution

(a) In the absence of predators we assume that the mouse popu-

lation increases at a rate proportional to the current population.

If we denote time by t and the mouse population by p(t), then

the assumption about population growth can be expressed by the

equation
dp

dt
= rp (1.12)

where the proportionality factor r is called the rate constant or

growth rate.

(b) Suppose that time is measured in months and that the rate

constant r has the value 0.5/month. Then using (1.12),

dp

dt
= 0.5p (1.13)

Each term in Eq.(1.13) has the units of mice/month.

(c) Now we add to the problem in (b) by supposing that several

owls live in the same neighborhood and that they kill 15 field mice
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per day (i.e., 450 field mice per month.) To bring this informa-

tion into the model, we must add another term to the differential

equation (1.13), so that it becomes

dp

dt
= 0.5p− 450. (1.14)

Remark A more general version of Eq. (1.14) is

dp

dt
= rp− k (1.15)

where the growth rate r and the predation rate k are unspecified.

Geometrical Considerations, Isoclines

Consider a differential equation in the explicit form

dy

dt
= f(t, y)

wheref is a given function of two variables t and y, and is called

the rate function.

The explicit form has the geometrical interpretation that the

slope of a solution y = y(t) has the value f(t0, y0) at the point

(t0, y0). This leads us to a useful graphical method for obtain-

ing a rough picture of the particular solution of the differential

equation. The procedure follows:

1. Evaluate the value of f at each point of a rectangular grid.

2. At each point of the grid, a short line segment (called lineal

element) is drawn whose slope is the value of f at that
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point. Thus each lineal element is tangent to the graph of

the solution passing through that point.

3. In this way we obtain a field of lineal elements, called the

direction field (slope field) of y′ = f(t, y). With the help

of the lineal elements we can easily graph approximation

curves to the (unknown) solution curves of y′ = f(t, y) and

thus obtain a qualitatively correct picture of these solution

curves.

Procedure for Finding Direction Field

Consider a differential equation in the explicit form

dv

dt
= f(t, v) (1.16)

where the rate function f is a given function of two variables t and

v. To find direction field we proceed as follows:

1. Suppose that the velocity v has a certain given valuev0.

2. Then, by evaluating the right side of Eq. (1.16), we can find

the corresponding value f(t, v0) of dv
dt .

3. Display the above information graphically in the tv-plane by

drawing short line segments with slope f(t, v0) at several

points on the line v = v0.

4. As in the above way we obtain a field of lineal elements,

called the direction field (slope field).
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We illustrate this method in the following example.

Example 17 (A Falling Object (continued)) Investigate the

behavior of solution of the differential equation

dv

dt
= 9.8− v

5
(1.17)

without solving the differential equation.

Solution

Here
dv

dt
= f(t, v)

where f(t, v) = 9.8− v
5 .

Suppose that the velocity v has a certain given value. Then,

by evaluating the right side of Eq. (1.17), we can find the corre-

sponding value of dv
dt .

1. For instance, if v = 40, then dv
dt = 9.8 − 40

5 = 1.8. This

means that the slope of a solution v = v(t) has the value

f(t, 40) = 1.8 at any point wherev = 40. We display this

information graphically in the tv-plane by drawing short line

segments with slope 1.8 at several points on the linev = 40.

2. Similarly, if v = 50, then dv
dt = 9.8− 50

5 = −0.2, so we draw

line segments with slope −0.2 at several points on the line

v = 50.

3. We obtain Fig. 1.4 by proceeding in the same way with other

values of v. Fig. 1.4 is the direction field (slope field) of the
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given differential equation.

Figure 1.4: A direction field of Eq. (1.17): dv
dt = 9.8− v

5

Now a solution of Eq. (1.17) is a function v = v(t) whose graph

is a curve in the tv-plane. The importance of the direction field

in Fig. 1.4 is that each line segment is a tangent line to one of

these solution curves. Thus, even though we have not found any

solutions, and no graphs of solutions appear in the figure, we can

draw some qualitative conclusions about the behavior of solutions:

1. For instance, if v is less than a certain critical value (i.e.,

the value of v, where dv
dt = 0), then all the line segments have

positive slopes, and the speed of the falling object increases

as it falls.
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2. If v is greater than a certain critical value, then the line

segments have negative slopes, and the speed of the falling

object decreases as it falls.

Now dv
dt = 0 implies 9.8 − v

5 = 0 implies v = (5)(9.8) = 49 m/s.

It is the critical value of v that separates objects whose speed is

increasing from those whose speed is decreasing.

Figure 1.5: Direction field and equilibrium solution for Eq. 1.17

The constant function v(t) = 49 is a solution of Eq. (1.17),

since substituting v(t) = 49(so that dv
dt = 0) into Eq. (1.17) makes

each side of the equation (1.17) to zero. Being a constant function,

the solution v(t) = 49 does not change with time, and is called

an equilibrium solution. It is the solution that corresponds

to a perfect balance between gravity and drag. The equilibrium

solution v(t) = 49 is shown by superimposing on the direction field

given in Fig. 1.5. From this figure we can conclude that all other
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solutions seem to be converging to the equilibrium solution as t

increases.

Remark: In an earlier example we have seen that the general

solution of the differential equation

dv

dt
= 9.8− v

5

is

v = v(t) = 49 + c e−
1
5 t.

Also it can be seen that as t → ∞, e−
1
5 t → 0 so that v(t) → 49,

the equilibrium solution.

Example 18 Find the equilibrium solution of

m
dv

dt
= mg − γv (m > 0, γ > 0).

Solution
dv
dt = 0 implies mg − γv = 0 implies v = mg

γ .

Hence the equilibrium solution is

v =
mg

γ
.

Example 19 Find the equilibrium solution of

dv

dt
= rp− k. (1.18)

Solution
dv
dt = 0 gives rp− k = 0 implies p(t) = k

r .
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Hence the equilibrium solution of Eq.(1.18) is p(t) = k/r.

Example 20 Investigate the solutions of

dp

dt
= 0.5p− 450 (1.19)

graphically.

Solution

Figure 1.6: Direction field and equilibrium solution for Eq. (1.19)

A direction field for Eq.(1.19) is shown in Fig. 1.6. For suffi-

ciently large values of p it can be seen from the figure or directly

from Eq.(1.19) itself, that dp/dt is positive, so that solutions in-

crease. On the other hand, if p is small, then dp/dt is negative and

solutions decrease. Again, the critical value of p, which separates

solutions that increase from those that decrease, is the value of

p for which dp/dt is zero. Now dp/dt = 0 in Eq.(1.19) gives the
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equilibrium solution

p(t) = 900

for which the growth term 0.5 and the term 450 in Eq.(1.19) are

exactly balanced. The equilibrium solution is superimposed in the

direction field shown in Fig. 1.6.



Chapter 2
Solutions of Some Differential

Equations

2.1 Solutions of Differential Equations

Example 1[ A Falling Object (continued)] Consider a falling

object of mass m = 10 kg and drag coefficient γ = 2 kg/s. Sup-

pose the object is dropped from a height of 300m. Find its velocity

at any time t. How long will it take to fall to the ground, and how

fast will it be moving at the time of impact?

Solution

If the velocity is v, with the aid of Eq.(1.10) in the previous

chapter, the differential equation corresponding to the given prob-

lem is

10
dv

dt
= 10× 9.8− 2v.

27
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i.e.,
dv

dt
= 9.8− v

5
. (2.1)

The object is dropped means the initial velocity is zero, so we have

the initial condition

v(0) = 0. (2.2)

Writing (2.1) in the form

dv/dt
v − (9.8)(5)

= −1
5
.

and integrating both sides, we obtain

ln |v(t)− 49| = − t
5

+ C

which gives

v(t)− 49 = e−
t
5
+C

so that (by taking c = eC) it follows that

v(t) = 49 + ce−
t
5 .

That is, the general solution of Eq. (2.1) is

v = 49 + ce−t/5 (2.3)

where c is arbitrary. To determine c, we substitute t = 0 and

v = 0 from the initial condition (2.2) into Eq. (2.3), and obtain
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c = −49. Then the solution of the initial value problem is

v = 49(1− e−t/5). (2.4)

Eq. (2.4) gives the velocity of the falling object at any positive

time (before it hits the ground).

Remark Graphs of the solution (2.3) for several values of c are

shown in Fig.2.1, with the solution (2.4) shown by the heavy curve.

It is evident that all solutions tend to approach the equilibrium

solution v = 49. This confirms the conclusions we reached earlier

on the basis of the direction fields in Fig.1.4 and Fig.1.5.

Figure 2.1:

To find the velocity of the object when it hits the ground, we

need to know the time at which impact occurs. In other words, we

need to determine how long it takes the object to fall 300 m. To
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do this, we note that the distance x the object has fallen is related

to its velocity v by the equation v = dx/dt, or

dx

dt
= 49(1− e−t/5). (2.5)

Consequently, by integrating both sides of Eq.(2.5), we have

x = 49t+ 245e−t/5 + c (2.6)

where c is an arbitrary constant of integration. The object starts

to fall when t = 0, so we know that x = 0 whent = 0. From

Eq.(2.6) it follows that c = −245, so the distance the object has

fallen at time t is given by

x = 49t+ 245e−t/5 − 245. (2.7)

Let T be the time at which the object hits the ground; then x =

300 when t = T . By substituting these values in Eq.(2.7), we

obtain the equation

300 = 49T + 245 e−
T
5 − 245

or

49T + 245eT/5 − 545 = 0. (2.8)

The value of T satisfying Eq. (2.8) can be approximated by a

numerical process (for example, Newton-Raphson Method) using a

scientific calculator or computer, with the result that T ∼= 10.51 s.
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At this time, the corresponding velocity vT is found from Eq. (2.4)

to be vT
∼= 43.01 m/s. The point (10.51, 43.01) is also shown in

Fig. 2.1.

Example 2 (Radioactivity, exponential decay) Experiments show

that a radioactive substance decomposes at a rate proportional to

the amount present at time t. Suppose at time t = 0, 2 grams of

a particular radioactive substance be present. Then what amount

of the substance will be there at time t (t > 0).

Solution

Step 1 (Setting up a mathematical model of the physical process)

Let y(t) denote the amount of substance present at time t. It is

given that rate of change dy/dt is proportional to y. Thus

dy

dt
= ky,

where k is the proportionality constant of negative sign, which is a

constant depends only on the nature of the radioactive substance.

(For example, if the radioactive substance is radium, then k ≈
−1.4× 10−11 sec−1)

Step 2 (Solving the differential equation)

The given differential equation, by separating variables (a de-

tailed discussion will be made in the next chapter), gives

dy

y
= k.
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Integrating with respect to t,

ln y = kt+ C

Hence

y(t) = cekt, with c = eC

is the general solution to the differential equation dy
dt = ky.

Step 3 (Determination of a particular solution using the initial

conditions) The particular solution satisfying the given initial con-

dition can be obtained by finding out the particular value of c.

Now by putting t = 0, y = 2 in y(t) = cekt we get c = 2 and so

the unique solution to the initial value problem is y(t) = 2ekt.

Hence the amount of substance at time t is given by y(t) = 2ekt

Example 3 Find the curve through the point (1, 1) in the xy-

plane having at each of its points the slope is –y/x.

Solution

Step 1 (Setting up a mathematical model of the geometrical prob-

lem)

Here y is a function of x and it is given that the slope dy/dx is

–y/x. i.e., the differential equation is

dy

dx
= −y

x
.

Step 2 (Solving the differential equation)
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Separating the variables, we obtain

dy

y
= −dx

x
.

Integration yields,

ln y = − lnx+ ln c

i.e.,

ln y + lnx = ln c

i.e.,

yx = c

i.e.,

y =
c

x

That is, the general solution to the differential equation dy
dx = − y

x

is y(x) = c
x , where c is an arbitrary constant.

Step 3 (Determination of a particular solution)

We want to find out the particular solution that passes through

the point (1,1). Now by putting x = 1, y = 1 in y(x) = c
x we get

c = 1 and so the particular solution is y(x) = 1
x .

Example 4 Let g denote the acceleration due to gravity (with

value 9.8ms−1) and s(t) the distance of a freely falling body in

vacuum at time t sec. Set up a mathematical model (i.e., set up a

differential equation) for the law that “the acceleration of a freely

falling body in vacuum is the acceleration due to gravity.” Also,
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show that the particular solution such that s = 0 at time t = 0 is

s(t) =
1
2
gt2.

Solution

Step 1 (Setting up a mathematical model)

By the law, acceleration = g,

i.e.,
d2s

dt2
= g.

Step 2 (Solving the differential equation)

Integrating the differential equation, we get

ds

dt
= gt+A,

where A is an arbitrary constant. Further integration yields,

s =
1
2
gt2 +At+B,

where B is also an arbitrary constant. This is the solution to the

differential equation.

Step 3 (Determination of a particular solution)

At time t = 0, s = 0. Also, since the body is freely falling, velocity

is zero, so that ds/dt = 0. Using these values, equations in Step 2

gives

A = 0, B = 0,
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and we obtain the particular solution

s(t) =
1
2
gt2.

Exercises

In Exercises 1- 6, state the order of the given differential equation:

1. y′ + 5y = 0

2. y′′ + 4y = 0

3. y′ − y = 0

4. y′′′ = 6

5. y′ + y tanx = 0

6. y′ − 3y2 = 0

In Exercises 7-11, verify that the given function is a solution

of the differential equation given to the right of it.

7. y = ce−8x; y′ + 8y = 0

8. y = c1e
x + c2e

−x; y′′ − y = 0

9. y = x4 + ax2 + bx+ c; y′′′ = 24x

10. y = A cosx; y′ + y tanx = 0

11. y = A cos 3x+B sin 3x; y′′ + 9y = 0

In Exercises 12-15 , verify that the given function is a so-

lution of the differential equation given to the right of it.

Graph the corresponding curves for some values of the con-

stant c.

12. y = ce−x; y′ + y = 0

13. y = ce−x + 4; y′ + y = 4



36CHAPTER 2. SOLUTIONS OF DIFFERENTIAL EQUATIONS

14. y = cx4; xy′ − 4y = 0

15. x2 + y2 = c; yy′ = −x In Exercises 16-19, verify that

the given function is a solution of the differential equation

given to the right of it and determine c so that the resulting

particular solution satisfies the given condition. Graph this

particular solution.

16. y = 3x+ c; y′ = 3; y = 1 when x = 0.

17. y = ce−x2
+ 2; y′ + 2xy = 0; y = 0.5 when x = 0.

18. y = ce−x + 2; y′ + y = 2; y = 3.2 when x = 0.

19. y = x3 + c; y′ = 3x2; y = −1 when x = 1.

In Exercises 20-23, find a first order differential equation

involving both y and y′ for which the given function is a

solution.

20. y = cos 2x21.y = xe−x

21. y = −e−3x23.y = x3 − 78

22. y = e−x2

23. y = x3

24. y = tanx

25. x2 + y2 = 16.



Chapter 3
First Order Linear Equations

In this chapter we discuss a method for the solution of first order

ordinary linear differential equations.

3.1 Linear First Order Differential Equa-

tions

A first order differential equation of the form

dy

dt
+ p(t)y = g(t)

where p(t) and g(t) are functions of t alone, is a first order linear

differential equation.

If g(t) = 0 for every t, the equation is said to be

homogeneous. Otherwise it is said to be nonhomogeneous.

37
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Determination of formula for the solution of the homoge-

neous linear differential equation

Consider the general first order linear equation

dy

dt
+ p(t)y = g(t) (3.1)

where p and g are given functions of t alone.

By multiplying the differential equation (3.1) by a certain func-

tion µ(t), the resulting equation would be readily integrable. The

function µ(t) is called an integrating factor.

To determine an appropriate integrating factor, we multiply

Eq. (3.1) by an as yet undetermined function µ(t), obtaining

µ(t)
dy

dt
+ p(t)µ(t)y = µ(t)g(t). (3.2)

By the product rule of differentiation, we have

d

dt
[µ(t)y] = µ(t)

dy

dt
+
dµ(t)
dt

y.

Hence the left side of Eq. (3.2) is the derivative of the product

µ(t)y, provided that µ(t) satisfies the equation

dµ(t)
dt

= p(t)µ(t). (3.3)
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If we assume temporarily that µ(t) is positive, then we have

dµ(t)/dt
µ(t)

= p(t),

and hence, integration yields

ln µ(t) =
∫
p(t)dt+ k.

Now let k = 0. Then we obtain

ln µ(t) =
∫
p(t)dt.

Since exp (lnx) = x, for x > 0, and since our assumption is that

µ(t) > 0, the above gives

µ(t) = exp
∫
p(t)dt. (3.4)

Returning to Eq.(3.2), we have

d

dt
[µ(t)y] = µ(t) g(t). (3.5)

Integrating, we obtain

µ(t) y =
∫
µ(t)g(t) dt+ c (3.6)

where c is an arbitrary constant. Sometimes the integral in Eq.

(3.6) can be evaluated in terms of elementary functions. However,

in general this is not possible, so the general solution of Eq. (3.1)
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is

y =
1
µ(t)

[∫ t

t0

µ(s)g(s)ds+ c

]
(3.7)

where t0 is some convenient lower limit of integration. Observe

that Eq.(3.7) involves two integrations, one to obtain µ(t) from

Eq.(3.4) and the other to determine y from Eq.(3.7)

Working Method for the Solution of Linear Differential

Equations

To find the general solution of the linear differential equation

dy

dx
+ p(t)y = g(t) (3.8)

1. Find the integrating factor by the formula

µ(t) = exp ∫ p(t)dt. (3.9)

2. Multiply Eq.(3.8) by µ(t) and obtain

d

dt
[µ(t)y] = µ(t)g(t) (3.10)

3. Integrating the above, we obtain

µ(t) y = ∫ µ(t) g(t) dt + c. (3.11)

Example 1 Solve the linear differential equation

dy

dt
− y = e2t.
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Solution

Here p(t) = −1, g(t) = e2t. Hence the integrating factor is given

by

µ(t) = e
∫

p(t) dt = e
∫
−dt = e−t.

Using (3.11), implicit solution is given by

ye−t =
∫
e2te−tdt+ c.

The corresponding explicit solution is

y = et
∫
etdt+ cet

i.e., y(t) = e2t + cet

Example 2 Solve the differential equation

sin 2t
dy

dt
= y + tan t.

Solution

Given equation can be written as

dy

dt
− y

sin 2t
=

tan t
sin 2t

=
1
2

sec2 t,

which is in the linear form. The integrating factor is given by

µ(t) = e
∫

p(t)dt = e−
1
2

∫
1

sin t cos t
dt = e−

1
2

∫
sec2 t
tan t

dt

= e−
1
2

log tan t =
1√
tan t

.
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Hence, using (3.11) solution is given by

y
1√
tan t

=
1
2

∫
sec2 t√
tan t

dt+ c

i.e.,
y√
tan t

=
√

tan t+ c.

Example 3 At time t = 0 a tank contains Q0 lb of salt dissolved

in 100gal of water (Fig. 3.1). Assume that water containing 1
4 lb

of salt/gal is entering the tank at a rate of r gal/min and that the

well-stirred mixture is draining from the tank at the same rate.

Assuming that salt is neither created nor destroyed in the tank set

up the initial value problem that describes this flow process. Find

the amount of salt Q(t) in the tank at any time, and also find the

limiting amount QL that is present after a very long time. If r = 3

and Q0 = 2QL, find the time T after which the salt level is within

2% of QL. Also find the flow rate that is required if the value of

T is not to exceed 45 min.

Solution

1. The rate of change of salt in the tank, dQ
dt , is equal to the

rate at which salt is flowing in minus the rate at which it is

flowing out.

2. The rate at which salt enters the tank is the concentration
1
4 lb/galtimes the flow rate r gal/min, or r

4 lb/min.
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Figure 3.1:

3. To find the rate at which salt leaves the tank, we need to

multiply the concentration of salt in the tank by the rate of

outflow, r gal/min.

4. Since the rates of flow in and out are equal, the volume of

water in the tank remains constant at 100 gal, and since the

mixture is ‘well-stirred’, the concentration throughout the

tank is the same, and is Q(t)
100 lb/gal. Therefore the rate at

which salt leaves the tank is r Q(t)
100 lb/min.

From the above information, the differential equation governing

the given process is
dQ

dt
=
r

4
− rQ

100
. (3.12)

The initial condition is

Q(0) = Q0. (3.13)
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Rewriting Eq. (3.12) in the standard form for a linear equation,

we have
dQ

dt
+
rQ

100
=
r

4

Thus the integrating factor is ert/100and the general solution is

Q(t) = 25 + ce−rt/100

where c is an arbitrary constant. To satisfy the initial condition

(3.13), we must choose c = Q0 − 25. Therefore the solution of the

initial value problem (3.12), (3.13) is

Q(t) = 25 + (Q0 − 25)e−rt/100 (3.14)

or

Q(t) = 25(1− e−rt/100) +Q0e
−rt/100 (3.15)

From Eq.(3.14) or (3.15), we can see that Q(t) → 25(lb)as t→∞,

so the limiting value QLis 25.

Now suppose that r = 3 and Q0 = 2QL = 50; then Eq.(??)

becomes

Q(t) = 25 + 25e−0.03t (3.16)

Since 2% of 25 is 0.5, we wish to find the time T at which Q(t)

has the value 25.5. Substituting t = T and Q = 25.5 in Eq. (3.16)
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and solving for T , we obtain1

T = (ln 50)/0.03 ∼= 130.4 min

To determine the value of r at T = 45, we use Eq. (3.14), set

t = 45, Q0 = 50, Q(t) = 25.5,and solve for r. We obtain

r = (100/45) ln 50 ∼= 8.69 gal/min

Example 4 Consider a pond that initially contains 10 million

gal of fresh water. Water containing an undesirable chemical flows

into the pond at the rate of 5 million gal/yr, and the mixture

in the pond flows out at the same rate. The concentration γ(t)

of chemical in the incoming water varies periodically with time

according to the expression γ(t) = 2 + sin 2t g/gal. Construct a

mathematical model of this flow process and determine the amount

of chemical in the pond at any time.

Solution

1. Since the incoming and outgoing flows of water are the same,

the amount of water in the pond remains constant at 107 gal.

2. Let us denote time by t, measured in years, and the chemical

by Q(t), measured in grams. Then the rate of change of

chemical in the pond, dQ
dt , is equal to the rate at which the

chemical flows into the pond minus the rate at which it is

flowing out.
1Note that ln 50 is the natural logarithm of 50.
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(a) The rate at which the chemical flows in is

γ× (5×106) gal/yr = (5×106) gal/ yr (2+sin 2t) g/gal

(b) The concentration of chemical in the pond is Q(t)
107 g/gal,

so the rate of flow out is

(5× 106) gal/yr [Q(t)/107] g/gal =
Q(t)

2
g/yr

From the above information, we obtain the differential equation

dQ

dt
= (5× 106)(2 + sin 2t)− Q(t)

2
,

where each term has the units of g/yr.

Let q(t) = Q(t)/106. Then

dq

dt
=

1
106

dQ

dt
,

so
dQ

dt
= 106dq

dt
.

Substituting these values, we obtain

dq

dt
+

1
2
q = 10 + 5 sin 2t (3.17)

Initially, there is no chemical in the pond, so the initial condition

is

q(0) = 0. (3.18)
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The integrating factor of the linear differential equation is µ(t) =

e∫
1
2dt = e

t
2 . Multiplying Eq.(3.17) by this factor we obtain

d

dt
(µ(t)q(t)) = (10 + 5 sin 2t)µ(t).

Integrating, we obtain

µ(t) q(t) = ∫ µ(t) (10 + 5 sin 2t) dt+ C

i.e.,

et/2q(t) = ∫ (10 + 5 sin 2t) et/2dt+ C

i.e.,

et/2q(t) = 20et/2 + 5 ∫ sin 2tet/2dt+ C

Take

I = ∫ sin 2t et/2dt

and apply integration by parts,

∫ uv′ = uv − ∫ u′v

with u = sin 2t and v′ = et/2. Then

I = sin 2t
et/2

1
2

− ∫ 2 cos 2t
et/2

1
2

dt

= 2 sin 2tet/2 − 4

{
cos 2t︸ ︷︷ ︸

u

et/2︸︷︷︸
v′

dt

with new u = cos 2t and v′ = et/2
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= 2 sin 2tet/2 − 4

[
cos 2t · e

t/2

1
2

−
∫
−sin 2t

2
· e

t/2

1
2

dt

]
= 2 sin 2t et/2 − 8 cos 2t et/2 − 16I.

Hence

I =
1
17

[
2 sin 2t et/2 − 8 cos 2t et/2

]
Substituting this and simplifying, we obtain the general solution

q(t) = 20− 40
17

cos 2t+
10
17

sin 2t+ ce−t/2

Using the initial condition we obtain

0 = q(0) = 20− 40
17

+ c,

which gives

c = −300/17,

so the solution of the initial value problem (3.17) with (3.18) is

q(t) = 20− 40
17

cos 2t+
10
17

sin 2t− 300
17

e−t/2.

Exercises

In Exercises 1-10, find the general solution of the differential

equation.

1. dy
dt − y = 3

2. y′ + 2ty = 0

3. y′ + 2y = 6et

4. y′ − 4y = 2t− 4t2
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5. y′ + y = sin t

6. y′ + y = cos t

7. y′ + ky = cos t

8. y′ = (y − 1) cot t

9. ty′ − 2y = t3et

10. t2y′ + 2ty = sinh 3t

In Exercises 11-23, solve the given initial value problem.

11. y′ − y = et, y(1) = 0

12. y′ + y = (t+ 1)2, y(0) = 0

13. y′ − 2y = 2 cosh 2t+ 4 , y(0) = −1.25

14. ty′ − 3y = t4(et + cos t)− 2t2 , y(π) = π3eπ + 2π2

15. y′ − y cot t = 2t− t2 cot t, y(π
2 ) = π2

4 + 1

16. y′ − y = 2te2t, y(0) = 1

17. y′ + 3y = te−3t, y(1) = 0

18. ty′ + 2y = t2 − t+ 1, y(1) = 1
2 , t > 0

19. y′ + (2/t)y = (cos t)/t2, y(π) = 0, t > 0

20. y′ − 4y = e4t, y(0) = 2

21. ty′ + 2y = sin t, y(π/2) = 1, t > 0

22. t3y′ + 4t2y = e−t, y(−1) = 0, t < 0

23. ty′ + (t+ 1)y = t, y(ln 2) = 1, t > 0
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24. Consider a tank used in certain hydrodynamic experiments.

After one experiment the tank contains 150 L of a dye solu-

tion with a concentration of 1 g/L. To prepare for the next

experiment, the tank is to be rinsed with fresh water flowing

in at a rate of 2 L/min. the well-stirred solution flowing out

at the same rate. Find the time that will elapse before the

concentration of dye in the tank reaches 1% of its original

value.

25. A tank originally contains 100 gal of fresh water. Then water

containing 1
2 lb of salt per gallon is poured into the tank at

a rate of 2 gal/min, and the mixture is allowed to leave at

the same rate of 2 gal/min, with the mixture again leaving

at the same rate. Find the amount of salt in the tank at the

end of an additional 10 min.

26. Suppose that a sum S0 is invested at an annual rate of return

r compounded continuously.

27. Find the time T required for the original sum to double in

value as a function of r.

28. Determine T if r = 8%

29. Find the return rate that must be achieved if the initial

investment is to double in 8 years.

30. Raju borrows ‘ 8000to buy a motor bike. The lender charges

interest at an annual rate of 10%. Assuming that interest is
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compounded continuously and Raju makes payments contin-

uously at a constant annual rate k, determine the payment

rate k that is required to pay off the loan in 3 years. Also

determine how much interest is paid during the 3-year pe-

riod.

Answers

1. y = c et − 3

2. yet
2

= c

3. y = c e−2t + 2 et

4. y = t2 + ce4t

5. y = c et + 1
2 (sin t − cos t)

6. y = 1
5 (2 cos t + sin t) + c e−2t

7. y = ( c + t) e−4t

8. y = 1 + c sin t

9. y = c t2 + t2 et

10. y = (1
3 t

2 )( cosh 3t + c)

11. y = (t + 1)et

12. y = −e−t + t2 + 1

13. y = (t + 1) e2t − 1
4e

−2t − 2

14. y = [et + sin t ] t3 + 2t2



52 CHAPTER 3. FIRST ORDER LINEAR EQUATIONS

15. y = t2 + sin t

16. y = 3et + 2(t− 1)e2t

17. y = (t2 − 1) e−3t

2

18. y = 3t4−4t3+6t2+1
12t2

19. y = sin t
t2

20. y = (t+ 2)e4t

21. y = t−2
[

π2

4 − 1− t cos t+ sin t
]

22. y = − (1+t)e−t

t4
, t 6= 0

23. y = t−1+2e−t

t , t 6= 0

24. t = 75 ln 100 min ∼= 345.4 min

25. Q = 50e−0.2(1− e−0.2) lb ∼= 7.42 lb

26. (a) ln 2
r yr (b) 8.66 yr (c) 8.66

27. k = 3086.64 /yr 3× 3086.64− 8000 = ‘ 1259.92

3.2 Method of Variation of Parameters

Method of variation of parameter (M.V.P) is an alternative

method for finding the general solution of the linear differential

equation

y′ + p(t)y = g(t). (3.19)

A solution of the corresponding homogeneous equation (i.e.,

an equation with g(t) ≡ 0) is

y(t) = Ae−
∫

p(t)dt (3.20)
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Using this function, let us try to find out a function A(t) such that

y(t) = A(t)e−
∫

p(t)dt (3.21)

is the general solution of the nonhomogeneous linear equation in

(3.19). This attempt is suggested by the form of the general solu-

tion Ay(t)of the homogeneous equation and consists in replacing

the parameter A by a variable A(t). Therefore, this approach is

called the method of variation of parameters.

Working Method for solving by method of variation of

parameters

To solve the linear differential equation

y′ + p(t)y = g(t)

(i) First find the solution y(x)of the corresponding homogeneous

equation

y′ + p(t)y = 0

by the formula

y(t) = Ae−
∫

p(t)dt

(ii) Then replace A by A(t) and find the function A(t) by sub-

stituting

y(t) = A(t)e−
∫

p(t)dt

in the non-homogeneous linear differential equation.
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Example 5 Applying method of variation of parameters solve

dy

dt
− y = 3et.

Solution

Here p(t) = −1, g(t) = 3et.

Hence the general solution to the corresponding homogeneous equa-

tion is given by

y(t) = Ae−
∫

p(t)dt = Ae−
∫
−1dt = Aet.

Replacing A by A(t), and assuming that y(t) = A(t)et is the gen-

eral solution of the nonhomogeneous equation, our next aim is

find the function A(t), by substituting y(t) = A(t)et in the given

nonhomogeneous differential equation, which gives

dA(t)
dt

et +A(t)et −A(t)et = 3et

or
dA(t)
dt

et = 3et

or
dA(t)
dt

= 3.

Integrating, we obtain

A(t) = 3t+ c.
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Hence the general solution to the given differential equation is

y = (3t+ c)et.

Exercises

Solve the following equations by the method of variation of pa-

rameters:

1. y′ − y = t

2. ty′ + 2y = sin t
t

3. y′ = e2t + y − 1

4. y′ + 2y = e−2t

5. ty′ − 2y = t4

6. (t+ 4)y′ + 3y = 3

7. y′ − 2y = t2e2t

8. y′ + y
t = 3 cos 2t, t > 0

9. ty′ + 2y = cos t, t > 0

10. 2y′ + y = 3t2

11. y′ − y = e2x

Answers

1. y = c et − t− 1

2. t2y + cos t = c

3. y = e2t + 1 + c et

4. y = (t+ c)e−2t

5. 1
2 t

4 + c t2

6. y = 1 + c
(t+4)3

7. y = ce2t + t3e2t

3

8. y = c
t + 3 cos 2t

4t + 3 sin 2t
2

9. y = c+cos t+t sin t
t2

10. y = ce−t/2 + 3t2 − 12t+ 24

11. y = e2x + cex
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3.3 Bernoulli’s Equation

A differential equation of the form

y′ + p(t)y = g(t)yn (3.22)

where p(t) and g(t) are functions of t alone is called Bernoulli’s

equation. (Note that here n may be any real number). We can

reduce equation (3.22) to the linear form as follows:

Dividing both sides of (3.22) by yn, we get

y−ny′ + p(t)y1−n = g(t)

Putting y1−n = z, this equation becomes

1
1− n

z′ + p(t)z = g(t)

i.e.,

z′ + (1− n)p(t)z = g(t)(1− n) (3.23)

Now (3.23) is in the linear form, solution of which is familiar to

us. After solving for z in (3.23), using y1−n = z, we get the value

of y, i.e., the solution of (3.22).

Example 6 Solve tdy
dt + y = ty3.

Solution
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Dividing the given differential equation by y3, we obtain

t

y3

dy

dt
+

1
y2

= t.

Putting 1
y2 = z, the equation becomes

−1
2
t
dz

dt
+ z = t.

i.e.,
dz

dt
− 2
t
z = −2.

The above is a linear differential equation and its integrating factor

is

µ(t) = e
∫

p(t)dt = e
∫
− 2

t
dt = e−2 ln|t| = eln|t|

−2

= |t|−2 =
1
t2
.

Hence the solution is given by

z
1
t2

=
∫
−2

1
t2
dt+ c

or
z

t2
=

2
t

+ c.

Now substituting z = 1
t2

, the solution of the given differential

equation is

(2 + ct)ty2 = 1.

We can solve certain non linear first order ordinary differential
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equation in a similar fashion as we solve a Bernoulli equation. This

is illustrated in the following Example.

Example 7 Solve dy
dt + t sin 2y = t3 cos2 y.

Solution

Dividing by cos2 y, we obtain

sec2 y
dy

dt
+ 2t tan y = t3

Put tan y = z. Then

sec2 y
dy

dt
=
dz

dt

and the equation becomes the linear differential equation

dz

dt
+ 2tz = t3.

Now the integrating factor is given by

µ(t) = e
∫

p(t)dt = e
∫

2t dt = et
2
.

So the solution is

zet
2

=
∫
t3et

2
dt+ c

or

zet
2

=
1
2

∫
2t · t2et2dt+ c

or

zet
2

=
1
2

∫
ueudu+ c,
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where u = t2. Hence

zet
2

=
1
2
eu(u− 1) + c

or

zet
2

=
1
2
et

2
(t2 − 1) + c

or

tan yet
2

=
1
2
et

2
(t2 − 1) + c

or

tan y =
1
2
(t2 − 1) + ce−t2 .

Exercises

Solve the following equations:

1. y′ + ty = ty−1

2. y′ + t−1y = t−1y−2

3. 2ty′ = 10t3y5 + y

4. y′ + y = ty−1

5. y′ − y tan t = sin t cos2 t
y2

6. y′ = y tan t− y2 sec t

7. ty′ + y = y2 log t

8. y′ + yt−1 = t3y4

9. y′ + ty
1−x2 = ty1/2

10. ty′ + y2t−1 = y

11. (1− t2)y′ − ty = t2y2

12. ty′ + y = t2y2 log t

13. tdy
dt + y = t3y6

14. Solve the initial value problem y′ − yt−1 = 1
2y

−1; y(1) = 0.

Answers
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1. y2 = 1 + cet
−2

5. y3 cos3 t = 1
2 cos6 t+ c

6. (t+ c)y = sin t

7. y(log t+ 1) + cty = 1

8. (c− 3t)t3y3 = 1

9.
√
y+ 1

3(1− t2) = c(1− t2)1/4

10. x = y(log t+ c)

11. (1 + ty) = y(1 − t2)1/2(c +

sin−1 t)

12. t3y(1− log t) + cty = 1

13. (ty)−5 = 5
2 t
−2 + c

14. t2 − y2 − t = 0.



Chapter 4
Separable Equations

Certain first order differential equations can be reduced to the

form

N(y) dy = M(x)dx (4.1)

by algebraic manipulations. An equation that can be brought

to the form as in (4.1) is called an equation with separable variables,

or a separable equation, because in (4.1) the variables x and y

are separated so that terms involving x appear only on the right

and that of y appears only on the left. By integrating both sides

of (4.1), we obtain

∫
N (y) dy =

∫
M (x) dx + c (4.2)

where c is an arbitrary constant.

If we assume that f and g are continuous functions, the

61
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integrals in (4.2) will exist, and by evaluating these integrals we

obtain the general solution of the given differential equation.

4.1 Identifying and Solving Separable Equa-

tions

Consider the first order differential equation

dy

dx
= f(x, y). (4.3)

To identify when an equation of the above form is a separable

equation, we first rewrite Eq.(4.3) in the form

M(x, y) +N(x, y)
dy

dx
= 0. (4.4)

It is always possible to do this by setting M(x, y) = −f(x, y)and

N(x, y) = 1, but there may be other ways as well. If it happens

that M is a function of x only and N is a function of y

only, then Eq.(4.4) becomes

M(x) +N(y)
dy

dx
= 0. (4.5)

such an equation is said to be separable, because if it is written

in the differential form

M(x)dx+N(y)dy = 0, (4.6)
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then, terms involving each variable may be placed on opposite

sides of the equation. The differential form (4.6) is also more sym-

metric and tends to suppress the distinction between independent

and dependent variables.

We now show that a separable equation can be solved by

integrating the functions M and N. To show this, let H1 and H2

be any antiderivatives of M and N, respectively. Thus

H ′
1(x) = M(x), H ′

2(y) = N(y), (4.7)

and then Eq.(4.5) takes the form

H ′
1(x) +H ′

2(y)
dy

dx
= 0. (4.8)

Since H2 is a function of y and y is a function of x, by the Chain

Rule for Functions of One Variable,1 we have
d

dx
H2(y) =

d

dy
H2(y)

dy

dx
.

1The Chain Rule for Functions of One Variable
Let w = f(y) be a differentiable function of y and y = ϕ(x) be a differentiable
function of x, then w is a differentiable composite function of x and the
derivative dw

dx
could be calculated using the Chain Rule given by

dw

dx
=

dw

dy
· dy

dx
.

As an example, using the Chain Rule, we find dw
dx

, when w = cosh−1 y, and
y = x2 as follows:

dw

dx
=

d

dy
(cosh−1 y)

d

dx
(x2) =

1√
y2 − 1

· 2x =
2x√

x4 − 1
.
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Also noting that

H ′
2(y) =

d

dy
H2(y),

the above gives

H ′
2(y)

dy

dx
=

d

dy
H2(y)

dy

dx
=

d

dx
H2(y). (4.9)

Hence, we can write Eq.(4.8) as

d

dx
H1(x) +

d

dx
H2(y) = 0.

i.e.,
d

dx
[H1(x) +H2(y)] = 0 (4.10)

Integrating Eq.(4.10), we obtain

H1(x) +H2(y) = c, (4.11)

where c is an arbitrary constant. Any differentiable function

y = φ(x) that satisfies Eq.(4.11) is a solution of Eq.(4.5); in other

words, Eq.(4.11) defines the solution implicitly rather than explic-

itly.

Example 1 Show that the differential equation

10y · dy
dx

+ 3x = 0 (4.12)

is separable. Illustrate the procedure discussed above by solving

this differential equation.
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Solution

The given differential equation can be written as

3x+ 10y
dy

dx
= 0

Comparing with the standard equation,

M(x) = 3x and N(y) = 10y.

Hence given is a separable equation.

Since y is a function of x, by the chain rule

d

dx
f(y) =

d

dy
f(y)

dy

dx
= f ′(y)

dy

dx
.

Here f ′(y) = 10y. Hence

f(y) =
10y2

2
= 5y2.

Also 3x is the derivative of 3x2

2 . Hence (4.12) takes the form

d

dx

(
3x2

2

)
+

d

dx

(
5y2
)

= 0

i.e.,
d

dx

(
3x2

2
+ 5y2

)
= 0

By integrating, we obtain

3x2

2
+ 5y2 = C.



66 CHAPTER 4. SEPARABLE EQUATIONS

Method of Solving Separable Equation

In practice, Eq.(4.11) is usually obtained from Eq.(4.6) by in-

tegrating the first term with respect to x and the second term with

respect to y. This is illustrated in the following example.

Example 2 Solve the differential equation dy
dx + 2xy = 0.

Solution

The given equation can be written in the form

2xdx+
dy

y
= 0.

The above is in the variable separable form with

M(x) = 2x and N(y) = 1
y .

By integrating the first term of the differential equation with re-

spect to x and the second term with respect to y, we obtain

x2 + ln y = c

or ln y = −x2 + c.

Since exp lnw = w (for w > 0), the above yields

or

y = e−x2+c.

The above can also be written as y = Ce−x2
, where C = ec in an

arbitrary constant.

Example 3 Solve the differential equation dy
dx = 1 + y2.

Solution
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The given differential equation can be written as

dy

1 + y2
= dx,

or

−dx+
dy

1 + y2
= 0

which is in the variable separable form with

M(x) = −1 and N(y) =
1

1 + y2
.

By integrating the first term of the differential equation with

respect to x and the second term with respect to y, we obtain

−x+ tan−1 y = c

or

tan−1 y = x+ c.

Separable Equation with Initial Condition

The differential equation (4.5), together with an initial condi-

tion

y(x0) = y0 (4.13)

form an initial value problem. To solve this initial value problem,

we must determine the appropriate value for the constant c in

Eq.(4.11). We do this by setting x = x0 and y = y0in Eq.(4.11)
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with the result that

c = H1(x0) +H2(y0) (4.14)

Substituting this value of c in Eq.(4.11) and noting that

H1(x)−H1(x0) =
∫ x

x0

M(s)ds

and

H2(y)−H2(y0) =
∫ y

y0

N(s)ds,

we obtain ∫ x

x0

M(s)ds+
∫ y

y0

N(s)ds = 0 (4.15)

Equation (4.15) is an implicit representation of the solution of the

differential equation (4.5) that also satisfies the initial condition

(4.13). We note that, to determine an explicit formula for the

solution, Eq. (4.15) must be solved for y as a function of x.

Example 4 Solve the initial value problem

ay′ = b− ky; y(0) = 0.

Solution

The given equation can be written in the form

−dx+
a

b− ky
dy = 0.

The above is in the variable separable form with
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M(x) = −1 and N(y) = a
b−ky .

By integrating the first term of the differential equation with re-

spect to x and the second term with respect to y, we obtain

−x− a

k
ln |b− ky| = c,

or

−a
k

ln |b− ky| = x+ c,

where c is an arbitrary constant.

To find the particular solution that satisfies the given initial

condition, we substitute x = 0, y = 0, and get the value of c as

c = −a
k

ln |b| ,

so that the unique solution to the initial value problem is given by

−a
k

ln |b− ky| = x− a

k
ln |b|

or

−a
k

ln
∣∣∣∣1− ky

b

∣∣∣∣ = x

or

1− ky

b
= e−

kx
a

or

y =
b

k
(1− e−

kx
a ).

Remark If f(x, y0) = 0 for some value y0 and for all x, then the
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constant function y = y0 is a solution of the differential equation

dy

dt
= f(x, y).

For example,
dy

dx
=

(y − 2) sin 3x
1 + 3y2

has the constant solution y = 2. Other solutions can be found by

separating the variables and integrating.

Example 5 Solve the initial value problem

dy

dx
=

3x2 + 4x+ 2
2(y − 1)

, (4.16)

with the initial condition

y(0) = −1 (4.17)

and determine the interval in which the solution exists.

Solution

The differential equation can be written as

2(y − 1)dy = (3x2 + 4x+ 2)dx.

Integrating the left side with respect to y and the right side with

respect to x gives

y2 − 2y = x3 + 2x2 + 2x+ c, (4.18)
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where c is an arbitrary constant. To determine the solution sat-

isfying the prescribed initial condition, we substitute x = 0 and

y = −1in Eq.(4.18), obtaining c = 3. Hence the solution of the

initial value problem is given implicitly by

y2 − 2y = x3 + 2x2 + 2x+ 3 (4.19)

Since Eq.(4.19) is quadratic in y, and we obtain

y = 1±
√
x3 + 2x2 + 2x+ 4. (4.20)

Equation (4.20) gives two solutions of the differential equation,

only one of which, however, satisfies the given initial con-

dition.

Since the initial condition is y(0) = −1, i.e., y = −1 when

x = 0, we have to take the solution corresponding to the minus

sign in Eq.(4.20), so

y = φ(x) = 1−
√
x3 + 2x2 + 2x+ 4 (4.21)

is the solution of the initial value problem given by (4.16) and

(4.17). Finally to determine the interval in which the solution

(4.21) is valid, we must find the interval in which the quantity

under the radical is positive. The only real zero of this expression

is x = −2, so the desired interval is x > −2.

Attention! Note that if the plus sign is chosen by mistake in
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Eq.(4.20), then we obtain the solution

y = ψ(x) = 1 +
√
x3 + 2x2 + 2x+ 4 (4.22)

of the same differential equation that satisfies the initial condition

y(0) = 3.

Example 6 A body of constant mass m is projected away from

the earth in a direction perpendicular to the earth’s surface with

an initial velocity v0. Assuming that there is no air resistance,

but taking into account the variation of earth’s gravitational field

with distance, find

(a) an expression for the velocity during the ensuing motion.

(b) the initial velocity that is required to lift the body to a given

maximum attitude ξ above the surface of the earth, and

(c) the least initial velocity for which the body will not return to

the earth (this velocity is called the escape velocity.)

Figure 4.1:

Solution

Let the positive y-axis point away from the center of the earth

along the line of motion with y = 0 lying on the earth’s surface



4.1. SOLVING SEPARABLE EQUATIONS 73

(Fig. 4.1). The gravitational force acting on the body (that is,

its weight) is inversely proportional to the square of the distance

from the center of the earth and is given by

w(y) = − k

(y +R)2
(4.23)

where k is a constant, R is the radius of the earth, and the minus

sign signifies that w(y) is directed in the negative y direction. We

know that on the earth’s surface w(0) is given by −mg, where g is

the acceleration due to gravity at sea level. Therefore (4.23) gives

−mg = w(0) =
−k

(0 +R)2

or

k = mgR2

and hence again by (4.23),

w(y) = − mgR2

(R+ y)2
.

Since there are no other forces acting on the body, the equation

of motion is

m
dv

dt
= − mgR2

(R+ y)2
(4.24)

and the initial condition is

v(0) = v0 (4.25)
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By the chain rule for functions of one variable,

dv

dt
=
dv

dy

dy

dt
= v

dv

dy
. (4.26)

Hence Eq. (4.24) becomes

v
dv

dy
= − gR2

(R+ y)2
. (4.27)

Separating the variables,

vdv = gR2 · dy

(R+ y)2
.

Integrating,
v2

2
=

gR2

R+ y
+ c. (4.28)

Since y = 0 when t = 0, the initial condition (4.26) at t = 0 can be

replaced by the condition that v = v0 when y = 0. Hence (4.28)

becomes
v2
0

2
= gR+ c

or

c =
v2
0

2
− gR.

Substituting this (4.28) gives,

v = ±

√
v2
0 − 2gR+

2gR2

R+ y
(4.29)

Note that Eq.(4.29) gives the velocity v as a function of y, the
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altitude, rather than as a function of time. The plus sign must be

chosen if the body is rising, and the minus sign if it is falling back

to earth.

(b) To determine the maximum altitude ξ that the body reaches,

we note that at the maximum altitude, velocity is zero. Hence we

set v = 0 and y = ξ in Eq.(4.29) and then solve for ξ, obtaining

ξ =
v2
0R

2gR− v2
0

(4.30)

Solving Eq.(4.30) for v0, we find the initial velocity required to lift

the body to the maximum altitude ξ, we obtain

v0 =

√
2gR

ξ

R+ ξ
(4.31)

(c) The escape velocity ve is found by letting ξ → ∞ in (4.31).

That is,

ve =

√
2gR lim

ξ→∞

ξ

R+ ξ
=

√
2g R lim

ξ→∞

1
R
ξ + 1

=
√

2gR. (4.32)

Example 7 (Separable and Linear First Order Differential Equa-

tions) Suppose that a sum of money is deposited in a bank that

pays interest at an annual rate r. The value S(t) of the invest-

ment at any time t depends on the frequency with which interest

is compounded as well as on the interest rate. Banks have various



76 CHAPTER 4. SEPARABLE EQUATIONS

policies concerning compounding: some compound monthly, some

weekly, some even daily.

(a) Assuming that compounding takes place continuously, set up

a simple initial value problem that describes the growth of the

investment. Then solve the initial value problem.

(b) Compare the result in the continuous model (a) with the sit-

uation in which compounding occurs at finite time intervals.

(c) In the case of continuous compounding, also assume that there

may be deposits or withdrawals in addition to the accrual of

interest. Set up and solve the initial value problem.

Solution
dS
dt , the rate of change of the value of the investment, is equal

to the rate at which interest accrues, which is the interest rate r

times the current value of the investment S(t). Thus

dS(t)
dt

= rS(t),

or simply
dS

dt
= rS (4.33)

is the differential equation that governs the process. Suppose the

value of the investment at initial time is, S0. Then

S(0) = S0. (4.34)
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Then the solution of the initial value problem given by (4.33)

and (4.34) gives the balance S(t) in the account at any time t.

This initial value problem is readily solved, since the differential

equation (4.33) is both linear and separable.

Eqn. (4.33) can be written in the separable form

dS

S
= r dt.

Integrating,

ln S = r t+ C.

Using the initial condition S = S0 at t = 0, we have

ln S0 = C

Hence general solution is

ln S = rt+ ln S0

or

ln
S

S0
= rt.

or

S(t) = S0e
rt (4.35)

Remark Thus a bank account with continuously compounding

interest grows exponentially.
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(b) If interest is compounded once a year, then after t years

S(t) = S0(1 + r)t.

If interest is compounded twice a year, then at the end of 6

months the value of the investment is S0[1+(r/2)], and at the end

of 1 year it is S0[1 + (r/2)]2. Thus, after t years we have

S(t) = S0

(
1 +

r

2

)2t

In general, if interest is compounded m times per year, then

S(t) = S0

(
1 +

r

m

)mt
. (4.36)

Remark We recall from calculus that

lim
m→∞

(
1 +

r

m

)mt
= ert,

and using this, we have

lim
m→∞

S0

(
1 +

r

m

)mt
= S0e

rt,

and hence the relation between formulas (4.35) and (4.36) is

justified.

(c) In the case of continuous compounding, let us suppose that

there may be deposits or withdrawals in addition to the accrual of

interest. If we assume that the deposits or withdrawals take place
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at a constant rate k, then Eq. (4.33) is replaced by

dS

dt
= rS + k,

or, in standard form,

dS

dt
− rS = k, (4.37)

where k is positive for deposits and negative for withdrawals.

(4.37) is a first order linear equation. Its integrating factor is

µ(t) = e∫ −rdt = e−rt.

Hence,
d

dt
(µ(t)S(t)) = kµ(t)

Integrating,

(µ(t)S(t)) = ∫ kµ(t)dt+ c

i.e.,

e−rtS(t) = k ∫ e−rtdt+ c

i.e.,

e−rt S(t) =
−k
r
· e−rt + c.

Hence general solution is

S(t) = cert − (k/r),
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where c is an arbitrary constant. To satisfy the initial condition

(4.34),

S0 = S(0) = C − k

r

which gives

c = S0 + (k/r).

Thus the solution of the initial value problem (4.37), with (4.34)

is

S(t) = S0e
rt + (k/r)(ert − 1). (4.38)

The first term in expression (4.38) is the part of S(t) that is due to

the return accumulated on the initial amount S0, and the second

term is the part that is due to the deposit or withdrawal rate k.

Example 8 Suppose that one opens an individual retirement

account (IRA) at age 25 and makes annual investments of Rs.2000

thereafter in a continuous manner. Assuming a rate of return of

8%, what will be the balance in the IRA at age 65?

Solution.

We have

S0 = 0, r = 0.08, and k = Rs 2000,

and we wish to determine S(40). From Eq. (4.38) we have ( with

t = 40)

S(40) =
2000
0.08

(e0.08×40 − 1) = (25, 000)(e3.2 − 1) = Rs 588, 313.

(4.39)

Remark It is interesting to note that the total amount invested



4.1. SOLVING SEPARABLE EQUATIONS 81

is 40×2000 = Rs. 80,000, so the remaining amount of Rs.508, 313

results from the accumulated return on the investment.

Example 9 Suppose that x0 bacteria are placed in a nutrient

solution at time t = 0, and that x = x(t) is the population of the

colony at a later time t. If food and living space are unlimited, and

if as a consequence the population at any moment is increasing at

a rate proportional to the population at that moment, find x as a

function of t.

Solution

Since the rate of increase of x is proportional to x itself, the

differential equation is
dx

dt
= kx,

where k is a proportionality constant.

By separating the variables,

dx

x
= k dt,

Integrating,

lnx = kt+ c.

Since x = x0 when t = 0, we have

c = lnx0

so

lnx = kt+ lnx0
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and

x = x0e
kt. (4.40)

Example 10 Suppose the human population in the earth is in-

creasing at an overall rate of approximately 2 percent per year of

the population at that time. Find the ‘doubling time’ T, that is,

the time needed for the total number of people in the world to

increase by a factor of 2.

Solution

Here the population at any moment is increasing at a rate

proportional to the population at that moment, and it is given that

proportionality constant is 2 percent. i.e., k = 2
100 = 0.02 = 1

50 .

Hence proceeding as in the previous example, we obtain

x = x0e
t/50 (4.41)

To find the doubling time T, that is, the time needed for the total

number of people in the world to increase by a factor of 2, we

replace (4.41) by

2x0 = x0e
T/50.

This yields

T/50 = ln 2,

so

T = 50 ln 2 ∼= 34.65 years,

since natural logarithm of 2,ln 2 ∼= 0.693.
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Example 11 A tank contains 50 gallons2 of brine (water with

a high salt content) in which 75 pounds3 of salt are dissolved.

Beginning at time t = 0, brine containing 3 pounds of salt per

gallon flows in at the rate of 2 gallon per minute, and the mixture

(which is kept uniform by stirring) flows out at the same rate.

When will there be 125 pounds of dissolved salt in the tank? How

much dissolved salt is in the tank at time after a long time?

Solution

If x = x(t) is the number of pounds of dissolved salt in the

tank at time t ≥ 0, then the concentration at that time is x/50

pounds per gallon.

The rate of change of x is
dx
dt =rate at which salt enters tank – rate at which salt leaves

tank.

Since

rate of entering = 3 · 2 = 6 lb/min

and

rate of leaving =
(

x
50

)
· 2 = x

25 lb/min,

we have
dx

dt
= 6− x

25
=

150− x

25
.

Separating variables,

dx

150− x
=

1
25
dt.

2Gallon is a unit of volume for liquid measure equal to 4.55 litres.
3Pounds is a unit of weight.
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Integrating,

ln (150− x) = − 1
25
t+ c.

Since x = 75 when t = 0, we see that c = ln 75, so

ln(150− x) = − 1
25
t+ ln 75, ,

and therefore

150− x = 75e−t/25

or

x = 75(2− e−t/25).

Hence x = 125 implies et/25 = 3 or t/25 = ln 3. Thus x = 125

pounds after t = 25 ln 3 ∼= 27.47 minutes.

Also, when t is large we see that x is nearly 75·2 = 150 pounds,

as common sense tells us without calculation.

4.1.1 Exercises Set A

In Exercises 1-15, solve the differential equations.

1. y′ = ky

2. y′ − 2y + a = 0

3. y′ = −xy

4. xy′ + by = 0

5. (x log x)y′ = y

6. dy
dx −

2
x

√
y − 1 = 0

7. (x+ 2) dy
dx = xy

8. yy′ − 2xey
2

= 0

9. 2 dy
dx = y cotx

10. y′ = (1 + x)(1 + y2)
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11. dy
dx = − csc y

12. yy′ − 0.5 sin2 ax = 0

13. dy
dx − y tanhx = 0

14. y′ − y cot 2x = 0

15. (1 + x2) dy
dx = 1 + y2

In Exercises 16-23, solve the initial value problems.

16. dy
dx − y tan 2x = 0; y(0) = 2

17. 2xy′ − 3y = 0; y(1) = 4

18. (x+ 1)y′ − 2y = 0; y(0) = 1

19. xy′ log x− y = 0; y(2) = log 4

20. dy
dx = 2exy3; y(0) = 0.5

21. dr
dt + tr = 0; r(0) = r0

22. dr sin θ − 2r cos θ dθ = 0; r(π/2) = 2

23. (x2 + 1) dy
dx + y2 + 1 = 0; y(0) = 1

24. y′ = xy3
√

1+x2
, y(0) = 1

25. y′ = sec y; y(0) = 0

Answers

1. y = cekx

2. y = ce2x + 1
2a

3. y = ce−
x2

2

4. yxb = c
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5. y = c log x

6. y = (log x+ c)2 + 1

7. (x+ 2)2y = cex

8. e−y2
+ 2x2 = c

9. y = c(sinx)1/2

10. y = tan(1
2x

2 + x+ c)

11. x− cos y = c

12. 4y2 = 2x− 1
a sin 2ax+ c

13. y = c coshx

14. y2 = sin 2x+ c

15. tan−1 y = tan−1 x+ c

16. y2 cos 2x = 4

17. y = 4x3/2

18. y = (1 + x)2

19. y = log(2 + x)

20. y2 = (8− 4ex)−1

21. r = r0e
−t2

2

22. r = 2 sin2 θ

23. y = 1−x
1+x

24. 1
y2 = 3− 2

√
1 + x2

25. y = sin− 1x

Exercises Set B

In Exercises 1-11, solve the given differential equation.

1. dy
dx + x

y = 0

2. dy
dx +

√
1−y2

1−x2 = 0

3. (1 + x)ydx+ (1− y)xdy = 0

4. (1 + x2)dy + x
√

1− y2dx = 0

5. (x2 − yx2)dy + (y2 + xy2)ydx = 0
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6. (ex + 1)ydy = ex(y + 1)dx

7.
√

1 + x2dy +
√

1 + y2dx = 0

8. sec2 x tan ydx+ sec2 y tanxdy = 0

9. ye2xdx− (1 + e2x)dy = 0

10. 3ex tan ydx+ (1− ex) sec2y dy = 0

11. Solve dy
dx = x−e−x

y+ey

In Exercises 12-17: (a) Find the solution of the given ini-

tial value problem in explicit form. (b) Determine (at least

approximately) the interval in which the solution is defined.

12. y′ = (1− 2x)y2, y(0) = −1/6

13. xdx+ ye−xdy = 0, y(0) = 1

14. y′ = 2x/(y + x2y), y(0) = −2

15. y′ = 2x/(1 + 2y), y(2) = 0

16. y′ = (3x2 − ex)/(2y − 5), y(0) = 1

17. sin 2xdx+ cos 3ydy = 0, y(π/2) = π/3

18. (Newton’s law of cooling). Assume that the rate at which a

hot body cools is proportional to the difference in tempera-

ture between it and its surroundings. A body is heated to

1100C and placed in air at 100C. After I hour its temper-

ature is 600C. How much additional time is required for it

to cool to 300C?
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19. A pot of carrot and garlic soup cooling in air at 00C was

initially boiling at 1000C and cooled 200C during the first 30

minutes. How much will it cool during the next 30 minutes?

20. The radiocarbon in living wood decays at the rate of 15.30

disintegrations per minute (dpm) per gram of contained car-

bon. Using 5600 years as the half-life of radiocarbon, esti-

mate the age of each of the following specimens discovered

by archaeologists and tested for radioactivity:

a) a piece of a chair leg from the tomb of King Tutankhamen,

10.14 dpm;

b) a piece of a beam of a house built in Babylon during the

reign of king Hammurabi, 9.52 dpm;

c) dung of a giant sloth found 6 feet 4 inches under the

surface of the ground inside Gypsum Cave in Nevada, 4.17

dpm;

d) a hardwood spear-thrower found in Leonard Rock shelter

in Nevada, 6.42 dpm.

Answers

1. x2 + y2 = a2

2. sin−1 x+ sin−1 y =c

3. x− y + log xy = c

4. sin−1 y + 1
2 log(1 + x2) = c

5. 1
x −

1
y + 1

2y2 = c+ log x

6. ey = c(y + 1)(ex + 1)

7. sinh−1 x+ sinh−1 y = c

8. tanx tan y = c
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9. 1 + e2x = cy2

10. tan y = c(1− ex)3

11. y2 − x2 + 2(ey − e−x) = c, y + ey 6= 0

12. (a) y = 1/(x2 − x− 6) (b) −2 < x < 3

13. (a) y = [2(1− x)ex − 1]1/2 (b) −1.68 < x < 0.77

14. (a) y = −[2 ln(1 + x2) + 4]1/2 (b) −∞ < x <∞

15. (a) y = −1
2 + 1

2

√
4x2 − 15 (b) x > 1

2

√
15

16. (a) y = 5
2 −

√
x3 − ex + 13

4 (b) −1.4445 < x < 4.6297

17. (a) y = [π − arcsin(3 cos2 x)]/3 (b) |x− π/2| < 0.6155

18. ln 5
ln 2 − 1 hours

19. 160C

20. (a) about 3330 years (b) about 3850 years

(c) about 10,510 years (d) about 7010 years

4.2 Equations Reducible to Separable Form:

By Substitution

Certain first order differential equations are not separable but can

be made separable by simple substitutions, which is illustrated

through the following examples.
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Example 12 Solve the differential equation

(2x− 4y + 5)y′ + x− 2y + 3 = 0.

Solution

Put x− 2y = u.

Then, differentiating both sides with respect to x, we obtain

1− 2
dy

dx
=
du

dx

or
dy

dx
=

1
2

(
1− du

dx

)

Substituting these values in the given differential equation, we

obtain

(2u+ 5)
1
2

(
1− du

dx

)
+ u+ 3 = 0

or

(2u+ 5)
du

dx
= 4u+ 11.

Separating variables, we get(
2u+ 5
4u+ 11

)
du = dx,
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which, by actual division,4 gives

1
2

(
1− 1

4u+ 11

)
du = dx.

On integration, we get

1
2

(
u− 1

4
log |4u+ 11|

)
= x+ c

or

u− 1
4

log |4u+ 11| = 2x+ C,

where C=2c.

Putting u = x− 2y, the above equation becomes

4x + 8y + log 4x-8y+11= C.

4.3 Exercises

In Exercises 1-8, using appropriate substitutions, find the general

solution of the following differential equations.

1. y′ = (y − x)2

2. y′ = tan(x+ y)− 1

3. xy′ = e−xy − y.

4. y′ = (x+ ey − 1)e−y

5. y′ = y−x+1
y−x+5

6. dy
dx = 1−2y−4x

1+y+2x

7. (2x− 4y + 5)dy = (x− 2y + 3)dx

4 Actual division gives, 2u+5
4u+11

= 1
2

(
1− 1

4u+11

)
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8. dy
dx = y

x

(
log y

x + 1
)

9. Solve the initial value problem:

2x2y dy
dx = tan(x2y2)− 2xy2; y(1) =

√
π/2

* Hints: Substitution required in the exercises are:

1. y − x = u

2. x+ y = u

3. xy = u

4. x+ ey = u

5. y − x = u

6. y + 2x = u

7. x− 2y = u

8. y/x = u

9. x2y2 = u.

Answers

1. y = x+ 1+ce2x

1−ce2x

2. sin(x+ y) = cex

3. xy = log(x+ c)

4. x+ ey = cex

5. (y − x)2 + 10y − 2x = c

6. (y + 2x)2 + 2(y − x) = c

7. (x−2y)2+5(x−2y) = −x+c.

8. y = xecx or log y
x = cx

9. log sin(x2y2) = x− 1

4.4 Equations Reducible to Separable Form:

Homogeneous Equation dy
dx = g

(y
x

)
If the right side of the equation

dy

dx
= f(x, y)
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can be expressed as a function of the ratio y
x only, then the

equation is said to be homogeneous. More precisely, a differential

equation of the form
dy

dx
= g

(y
x

)
(4.42)

where g is any given function of y
x [for example

( y
x

)2, cos
( y

x

)
, 1+

y
x , etc.] is called a homogeneous equation.

The form of equation (4.42) suggests that we may introduce a

new variable u such that

u =
y

x
,

where y and u are functions of x. Then

y = xu.

Differentiating with respect to x, we get

dy

dx
= u+ x

du

dx
(4.43)

By inserting this into (4.42) and noting that g
( y

x

)
= g(u), we

obtain

u+ x
du

dx
= g(u).

Separating the variables u and x, we have the separable form

du

g(u)− u
=
dx

x
(4.44)
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If we integrate (4.44) and then replace u by y/x, we obtain the

general solution of (4.42).

Example 13 Solve the first order differential equation

2xy
dy

dx
− y2 + x2 = 0.

Solution

The given equation can be written as

dy

dx
=
y2 − x2

2xy
=

( y
x

)2 − 1
2
( y

x

) , (4.45)

and hence is a homogenous equation.

Put u = y
x . Then y = ux, which on differentiation with respect to

x yields
dy

dx
= u+ x

du

dx
.

Substitution on the differential equation (4.45) gives

u+ x
du

dx
=
u2 − 1

2u

implies

x
du

dx
=
u2 − 1

2u
− u = −u

2 − 1
2u

..

Separating the variables, we obtain

2u du
1 + u2

= −dx
x
.
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On integration, we obtain

ln
∣∣1 + u2

∣∣ = − lnx+ ln c,

where c is an arbitrary constant. Hence

1 + u2 =
1
cx
.

Replacing u by y/x, we obtain

1 +
(y
x

)2
=

1
cx

or
x2 + y2

x2
=

1
cx

or

x2 + y2 =
1
c
· x

i.e.,

x2 + y2 = Cx,

where C = 1
c , is the general solution to the given differential equa-

tion.

Exercises

1. x(x− y) dy
dx + y2 = 0

2. dy
dx = −x2+3y2

3x2+y2

3. dy
dx = x2−4xy−2y2

2x2+4xy−y2

4. dy
dx = x2+y2

x2+xy

5. x(y − x)dy = (y + x)ydx



96 CHAPTER 4. SEPARABLE EQUATIONS

6. (xy − 2y2)dx− (x2 − 3xy)dy = 0

7. dy
dx = y+

√
x2+y2

x

8. (x2 − 2xy − y2)dx− (x+ y)2dy = 0

9. (x3 − 3xy2)dy = (y3 + 3x2y)dx

10. xy2 dy
dx = x3 + y3

Answers

1. y = ce
y
x .

2. 2xy
(x+y)2

+ log(x+ y) = c

3. x3 − 6x2y − 6xy2 − y3 = c

4. (x− y)2e
y
x = cx

5. xy = ce
y
x

6. y3 = cx2e
−x

y

7. y +
√
x2 + y2 = cx2

8. c+ x3 = y3 + 3x2y + 3xy2

9. (x2 − y2)2 = cxy

10. y3 = 3x3(lnx+ c)
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4.5 Equations Reducible to Separable Form:

via Reducing to Homogeneous Equation

Certain equation may not be in the homogeneous form, but can

be made to homogeneous form by appropriate change of variables.

This is illustrated in the following example.

Example 14 Solve dy
dx = x+2y−3

2x+y−3 .

Solution

The given equation is not readily homogeneous. But it can be

reduced to the homogeneous type by substituting

x = X + h and y = Y + k

where h and k are constants to be determined later. From the

substitution, we have
dy

dx
=
dY

dX

and the equation takes the form

dY

dX
=

(X + 2Y ) + (h+ 2k − 3)
(2X + Y ) + ((2h+ k − 3)

(4.46)

Now, h and k are chosen so that h+2k−3 = 0 and 2h+k−3 = 0,

solving which we get h = 1 and k = 1. Therefore (4.46) takes the

form
dY

dX
=
X + 2Y
2X + Y

(4.47)

which is a homogeneous equation. By substituting

Y = V X and
dY

dX
= V +X

dV

dX
,
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equation (4.47) takes the form

X dV
dX = 1+2V

2+V − V or dX
X = 2+V

1−V 2dV or dX
X =

[
1/2
1+V + 3/2

1−v

]
dV

Integration of the above yields

logX =
1
2

log (1 + V )− 3
2

log (1− V ) + logC,

where C is an arbitrary constant. The above can be simplified to

X2(1− V )3 = C2(1 + V ).

Substituting the values of X and V, we get the required general

solution as

(x− y)3 = C2(x+ y − 2).

Exercises

1. dy
dx = x+2y−3

2x+y−3

2. dy
dx = 3x−5y−9

2x−4y−8

3. dy
dx = 2x+9y−20

6x+2y−10

4. dy
dx = x+7y+2

3x+5y+6

5. dy
dx = x+7y+2

3x+5y+6

6. .(x−y−2)dx+(x+y)dy = 0

7. (3x+y−5)dy = 2(x+y−1)dx

8. dy
dx = 2x+3y+4

4x+6y+5

9. (2x− 4y + 3) dy
dx + (x− 2y + 1) = 0

10. dy
dx = 2x+y−3

4x+2y+7

Answers

1. x+ y − 2 = c(x− y)3
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2. (y − x+ 1)2 = c(4y − 3x+ 6)

3. (y − 2x)2 = c(2y + x− 5)

4. (x− y + 2)4 = c(x+ 5y + 2)

5. log(x− y + 2) = 2y − x+ c

6. log[(x+ 1)2 + (y − 1)2] + 2 tan−1
[

y−1
x+1

]
= c

7. (x− y − 3)4 = c(2x+ y − 3)

8. 9 log(14x+ 21y + 22) + 21x− 42y + c = 0

9. log(4x− 8y + 5) = 4x+ 8y + c

10. 13 log(10x+ 5y + 11) = 5x− 10y − c.



Chapter 5
Differences Between Linear and

Nonlinear Equations

5.1 Linear and Nonlinear Equations

The first theorem in this chapter says that if the underlying dif-

ferential equation of an initial value problem is linear, then the

solution to the IVP is unique. We will see that this need not be

true for initial value problems with non-linear differential equa-

tions.

Theorem 1 [Existence and Uniqueness Theorem for First-

Order Linear Equations] If the functions p and g are continuous

on an open interval I : α < t < β containing the point t = t0, then

there exists a unique function y = φ(t) that satisfies the linear

100
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differential equation

y′ + p(t)y = g(t) (5.1)

for each t in I, and that also satisfies the initial condition

y(t0) = y0, (5.2)

where y0 is an arbitrary prescribed initial value.

Example 1 Use Theorem 1 to find an interval in which the initial

value problem

ty′ + 2y = 4t2 (5.3)

y(1) = 2 (5.4)

has a unique solution. Also find the solution.

Solution

Eq.(5.3) can be brought into the standard form (5.1) as follows:

y′ +
2
t
y = 4t

Hence p(t) = 2/t and g(t) = 4t. Thus for this equation, g is

continuous for all t, while p is continuous only for t < 0or for t > 0.

The interval t > 0 contains the initial point t = 1; consequently,

Theorem 1 guarantees that the initial value problem (5.3) with

(5.4) has a unique solution on the interval 0 < t <∞.
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Here integrating factor is

µ(t) = e∫ p(t) dt = e∫
2
t dt = e2 ln t = t2

... d
dt

(µ(t)y) = 4µ(t)t.

Integrating,

µ(t)y = ∫ 4t3dt+ C

t2y = t4 + C

or

y = t2 +
C

t2
.

The initial condition y = 2 when t = 1 gives 2 = 1 + C or C = 1.

Hence the solution of this initial value problem is

y = t2 +
1
t2
, t > 0 (5.5)

Example 2 Solve the initial value problem

ty′ + 2y = 4t2 (5.6)

y(−1) = 2 (5.7)

Solution

Comparing with the IVP in Example 1, here only the initial

condition (5.4) is changed to y(−1) = 2. Theorem 1 asserts the
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existence of a unique solution for t < 0. Proceeding as in Example

1, the solution is given by y = t2 + 1
t2
, t < 0.

The following is a general version of Theorem 1.

Theorem 2 [Existence and Uniqueness Theorem for First-

Order Nonlinear Equations] Let the functions f and ∂f/∂y

be continuous in some rectangle (Fig.5.1) α < t < β, γ < y <

δcontaining the point (t0, y0). Then, in some interval t0−h < t <

t0 + h contained in α < t < β, there is a unique solution y = φ(t)

of the initial value problem

y′ = f(t, y), y(t0) = y0. (5.8)

Figure 5.1:

Remark If all the conditions of Theorem 2 except the continu-

ity of ∂f
∂y are satisfied, then the solution has a solution (but not
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unique).

Figure 5.2:

Example 3 Apply Theorem 2 to the initial value problem

dy

dx
=

3x2 + 4x+ 2
2(y − 1)

, y(0) = −1 (5.9)

Solution

Here

f(x, y) =
3x2 + 4x+ 2

2(y − 1)
,

and

∂f

∂y
=

3x2 + 4x+ 2
2

∂

∂y

(
1

y − 1

)
= −3x2 + 4x+ 2

2(y − 1)2
.

Each of these functions is continuous everywhere except on the
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line y = 1. Hence, a rectangle (Fig. 5.2) can be drawn about the

initial point (0,−1) in which both f and ∂f/∂y are continuous.

Hence, Theorem 2 guarantees that the initial value problem has a

unique solution in some interval about x = 0. It has been seen in

Example 5 of the previous chapter that the solution to the initial

value problem (5.9) is

y = 1−
√
x3 + 2x2 + 2x+ 4.

Also, the above solution is valid when x3 + 2x2 + 2x+ 4 > 0. The

only real zero of x3 + 2x2 + 2x + 4 = 0 is x = −2, and hence the

solution is valid only when x > −2.

Attention! We note that even though the rectangle can be

stretched infinitely far in both the positive and negative x-directions,

this does not necessarily mean that the solution exists for all x.

Indeed, the solution of the initial value problem (5.9) exists only

for x > −2.

[Attention! Theorem 1 is not applicable to the initial value prob-

lem (5.9) in Example 3, since the differential equation is nonlin-

ear.]

Example 4 (IVP with more than one solution) Can we apply

Theorem 2 to the IVP

dy

dx
=

3x2 + 4x+ 2
2(y − 1)

, y(0) = 1 ?

Also solve the IVP.
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Solution

The initial point (0, 1) lies on the line y = 1. Since f and ∂f
∂y

are not defined at y = 1, no rectangle can be drawn about (0, 1),

within which f and ∂f/∂y are continuous. Hence, Theorem 2 says

nothing about possible solutions of the given initial value problem.

Separating the variables we obtain

2(y − 1)dy = (3x2 + 4x+ 2)dx.

Integrating, we obtain

y2 − 2y = x3 + 2x2 + 2x+ c.

Further, if x = 0 and y = 1, then c = −1. Hence

y2 − 2y = x3 + 2x2 + 2x− 1.

Solving for y, the above quadratic equation in y gives

y = 1±
√
x3 + 2x2 + 2x (5.10)

Remark The above example deals a case where Theorem 1 and

Theorem 2 cannot be applied. Also note that this IVP has more

than one solution. Equation (5.10) provides two functions that

satisfy the given differential equation for x > 0 and also satisfy

the initial condition y(0) = 1.

Example 5 (IVP with infinite number of solutions) Can we apply
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Theorem 2 to the initial value problem

dy

dt
= y1/3, y(0) = 0 (5.11)

for t ≥ 0? Solve the initial value problem.

Solution

The function f(t, y) = y1/3 is continuous everywhere, but

∂f/∂y does not exist when y=0, and hence is not continuous there.

Thus Theorem 2 does not apply to this problem and no conclusion

can be drawn from it. However, by the remark following Theorem

2, the continuity of f does ensure the existence of solutions, but

not their uniqueness.

Obviously, the function

y = ψ(t) = 0, t ≥ 0 (5.12)

is a solution to the IVP (5.11).

To find other solutions of (5.11), we solve the differential equa-

tion. By separating variables,

y−1/3dy = dt.

Integrating,
3
2
y2/3 = t+ c.

Hence

y =
[
2
3
(t+ c)

]3/2
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The initial condition y = 0 when t = 0 gives c = 0. Hence a

solution to the IVP is

y = φ1(t) =
(

2
3
t

)3/2

, t ≥ 0 (5.13)

Also the function

y = φ2(t) = −
(

2
3
t

)3/2

, t ≥ 0 (5.14)

is also a solution of the initial value problem. Also, for an arbitrary

positive t0, the functions

y = χ(t) =

{
0 if 0 < t < t0

±
[

2
3(t− t0)

]3/2 if t ≥ t0
(5.15)

are continuous, differentiable (in particular at t = t0), and are

solutions of the initial value problem (5.15).

We conclude that the given IVP has an infinite number of

solutions.

Remark to Example 5

1. As noted in the solution of Example 5, the existence and

uniqueness theorem is not applicable if y = 0. i.e., when

the initial point (0, 0) lies on the t-axis. If the initial point

(t0, y0)is any point not on the t-axis, however, then the the-

orem guarantees that there is a unique solution of the differ-

ential equation y′ = y1/3 passing through (t0, y0).
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Interval of Definition or Interval of Existence

According to Theorem 1, the solution of a linear equation

y′ + p(t)y = g(t),

subject to the initial condition y(t0) = y0, exists throughout any

interval about t = t0 in which the functions p and g are continuous.

Thus, vertical asymptotes or other discontinuities in the solution

can occur only at points of discontinuity of p or g. For instance,

the solution in Example 1 (with one exception) are asymptotic

to the y-axis, corresponding to the discontinuity at t = 0in the

coefficient p(t) = 2/t, but none of the solutions has any other

point where it fails to exist and to be differentiable. The one

exceptional solution shows that solutions may sometimes remain

continuous even at point of discontinuity of the coefficients.

On the other hand, for a nonlinear initial value problem satis-

fying the hypotheses of Theorem 2, the interval in which a solution

exists may be difficult to determine. The solution y = φ(t)is cer-

tain to exist as long as the point [t, φ(t)] remains within a region

in which the hypotheses of Theorem 2 are satisfied. This is what

determines the value of h in that theorem. However, since φ(t) is

usually not known, it may be impossible to locate the point [t, φ(t)]

with respect to this region. In any case, the interval in which a

solution exists may have no simple relationship to the function f

in the differential equation y′ = f(t, y). This is illustrated by the

following example.
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Example 6 Solve the initial value problem

y′ = y2, y(0) = 1 (5.16)

and determine the interval in which the solution exists.

Solution

Since f(t, y) = y2 and ∂f
∂y = 2y are continuous everywhere, by

Theorem 2, the given initial value problem has a unique solution.

To find the solution, we separate the variables to obtain

dy

y2
= dt

i.e.,

y−2dy = dt. (5.17)

Integrating,

−y−1 = t+ c.

Then, solving for y, we have

y = − 1
t+ c

(5.18)

The initial condition y(0) = 1 gives c = −1, so

y =
1

1− t
(5.19)

is the solution of the given initial value problem. Clearly, the

solution becomes unbounded as t → 1; therefore, the solution
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exists only in the interval −∞ < t < 1.

Example 7 Solve the initial value problem

y′ = y2, (5.20)

with the initial condition

y(0) = y0, (5.21)

and determine the interval in which the solution exists.

Solution

The only difference of the given IVP that in the previous exam-

ple is that the initial condition is replaced by y(0) = y0. Proceeding

as in the previous example, (5.18) gives c = − 1
y0

, and hence

y =
y0

1− y0t
(5.22)

is the solution of the initial value problem (5.20) with the initial

condition (5.21). Observe that the solution (5.22) becomes un-

bounded as t → 1/y0, so the interval of existence of the solution

is {
−∞ < t < 1

y0
if y0 > 0

1
y0
< t <∞ if y0 > 0

Remark The above two examples illustrates another feature of

initial value problems for nonlinear equations; namely, the sin-

gularities of the solution may depend in an essential way on the

initial conditions as well as on the differential equation.
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General Solution do not provide all the solutions

Another way in which linear and nonlinear equations differ

concerns the concept of a general solution.

1. For a first order linear equation it is possible to obtain a so-

lution containing one arbitrary constant (called general solu-

tion), from which all possible solutions follow by specifying

values for this constant.

2. For nonlinear equations this may not be the case; even though

a solution containing an arbitrary constant may be found,

there may be other solutions that cannot be obtained by

giving values to this constant.

Example 8 y = ψ(t) = 0 for all t is a solution of the differential

equation

y′ = y2

that cannot be obtained from the solution (Ref. Example 6)

y = − 1
t+ c

by assigning a value to c.

Remark We use the term “general solution” only when discussing

linear equations.

The above example leads to the following definition.

Definition (Singular solution) In some cases, there may be fur-

ther solutions of a given differential equation, which cannot be
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obtained by assigning a definite value to the arbitrary constant in

the general solution. Such a solution is called a singular solution

of the differential equation.

Example 9 y = ψ(t) = 0 for all t is a singular solution of the IVP

y′ = y2, y(0) = 1

as it cannot be obtained from the solution

y = − 1
t+ c

by assigning a value to c.

Exercises

In each of Exercises 1-6, determine (without solving the problem)

an interval in which the solution of the given initial value problem

is certain to exist.

1. (t− 3)y′ + (ln t)y = 2t, y(1) = 2

2. t(t− 5)y′ + y = 0, y(2) = 1

3. y′ + (tan t)y = sin t, y(π) = 0

4. (4− t2)y′ + 2ty = 3t2, y(−3) = 1

5. (4− t2)y′ + 2ty = 3t2, y(1) = −3

6. (ln t)y′ + y = cot t, y(2) = 3

In each of Exercises 7-12, state where in the ty-plane the

hypotheses of Theorem are satisfied.
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7. y′ = t−y
2t+5y

8. y′ = (1− t2 − y2)
1
2

9. y′ = (t2 − y2)
3
2

10. y′ = ln |ty|
1−t2+y2

11. dy
dt = 1+t2

3y−y2

12. dy
dt = (cot t)y

1+y

In each of Exercises 13-16, solve the given initial value prob-

lem and determine how the interval in which the solution

exists depends on the initial value y0.

13. y′ = −4 t
y , y(0) = y0

14. y′ = 2ty2, y(0) = y0

15. y′ + y3 = 0, y(0) = y0

16. y′ = t2

y(1+t3)
, y(0) = y0

17. Consider the initial value problem y′ = y
1
3 , y(0) = 0.

(a) Is there a solution that passes through the point (1, 1)?

If so, find it.

(b) Is there a solution that passes through the point (2, 1)?

If so, find it.

(c) Consider all possible solutions of the given initial value

problem. Determine the set of values that these solu-

tions have at t = 2.

Answers

1. 0 < t < 3

2. 0 < t < 5

3. π
2 < t < 3π

2

4. −∞ < t < −2
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5. −2 < t < 2

6. 1 < t < π

7. 2t+ 5y > 0 or 2t+ 5y < 0

8. t2 + y2 < 1

9. Everywhere

10. 1− t2 + y2 > 0 or 1− t2 + y2 < 0, t 6= 0, y 6= 0

11. y 6= 0, y 6= 3

12. y 6= nπ for n = 0, ±1, ±2, . . . y 6= −1

13. y = ±
√
y2
0 − 4t2 if y0 6= 0;|t| < |y0|

2

14. y = [(1/y0)− t2]−1 if y0 6= 0; y = 0 if y0 = 0;

interval is |t| < 1√
y0

if y0 > 0; −∞ < t <∞ if y0 ≤ 0;

15. y = y0/
√

2ty2
0 + 1 if y0 6= 0; y = 0 if y0 = 0;

interval is − 1
2y2

0
< t <∞ if y0 6= 0; −∞ < t <∞ if y0 = 0

16. y = ±
√

2
3 ln(1 + t3) + y2

0; −[1− exp(−3y2
0/2)]1/3 < t <∞



Chapter 6
Exact Differential Equations

In this chapter we consider a class of equations known as exact

equations for which there is a well-defined method of solution. We

begin with solving a differential equation that is neither linear nor

separable.

6.1 Exact Differential Equations

Example 1 Solve the differential equation

2x+ y2 + 2xyy′ = 0 (6.1)

Solution

The equation is neither linear nor separable. However, we

observe that the function ψ(x, y) = x2 + xy2 of two variables x

116



6.1. EXACT DIFFERENTIAL EQUATIONS 117

and y has the property that

2x+ y2 =
∂ψ

∂x
, 2xy =

∂ψ

∂y
(6.2)

Therefore the differential equation (6.1) can be written as

∂ψ

∂x
+
∂ψ

∂y

dy

dx
= 0. (6.3)

Assuming that y is a function of x, and using the chain rule for

functions of one variable, we have

dψ

dx
=
∂ψ

∂x

dx

dx
+
∂ψ

∂y

dy

dx
.

Hence we can write Eq.(6.3) in the equivalent form

dψ

dx
= 0

i.e.,
dψ

dx
=

d

dx
(x2 + xy2) = 0 (6.4)

Therefore

ψ(x, y) = x2 + xy2 = c, (6.5)

where c is an arbitrary constant, is an equation that defines solu-

tions of Eq.(6.1) implicitly.

Method of Solving Equations of the FormM(x, y)+N(x, y)y′ =

0
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Let the differential equation

M(x, y) +N(x, y)y′ = 0 (6.6)

be given. Suppose that we can identify a function ψ such that

∂ψ

∂x
(x, y) = M(x, y),

∂ψ

∂y
(x, y) = N(x, y), (6.7)

and such that ψ(x, y) = c defines y = φ(x) implicitly as a differ-

entiable function of x. Then

M(x, y) +N(x, y)y′ =
∂ψ

∂x
+
∂ψ

∂y

dy

dx
=

d

dx
ψ[x, φ(x)]

and the differential equation (6.6) becomes

d

dx
ψ[x, φ(x)] = 0. (6.8)

In this case Eq.(6.6) is said to be an exact differential equa-

tion. Solutions of Eq.(6.6), or the equivalent Eq.(6.8), are given

implicitly by

ψ(x, y) = c, (6.9)

where c is an arbitrary constant.

In Example 1 it was relatively easy to see that the differen-

tial equation was exact and, in fact, easy to find its solution, by

recognizing the required function ψ. For more complicated equa-

tions it may not be possible to do this so easily. A systematic
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way of determining whether a given differential equation is exact

is provided by the following theorem.

Theorem Let the functions M, N, My, and Nx (where sub-

scripts denote partial derivatives) be continuous in the rectangular

region R : α < x < β, γ < y < δ. Then

M(x, y) +N(x, y)y′ = 0 (6.10)

is an exact differential equation in the region R if and only if

My(x, y) = Nx(x, y) (6.11)

at each point of R. That is, there exists a function ψ satisfying

ψx(x, y) = M(x, y), ψy(x, y) = N(x, y), (6.12)

if and only if M and N satisfy Eq.(6.11).

Proof The proof of this theorem has two parts. First we show

that if there is a function ψ such that Eqs.(6.12) are true, then

it follows that Eq.(6.11) is satisfied. Computing My and Nx from

Eqs.(6.12), we obtain

My(x, y) = ψxy(x, y), Nx(x, y) = ψyx(x, y). (6.13)

Since My and Nx are continuous, it follows that ψxy and ψyx are

also continuous. This guarantees their equality, and Eq.(6.11)
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follows.

We now show that if M and N satisfy Eq.(6.11), then Eq.(6.10)

is exact. The proof involves the construction of a function ψ sat-

isfying Eqs.(6.12)

ψx(x, y) = M(x, y), ψy(x, y) = N(x, y).

We begin by integrating the first of Eqs. (6.12) with respect to x,

holding y constant. We obtain

ψ(x, y) = Q(x, y) + h(y), (6.14)

whereQ(x, y) is any differentiable function such that ∂Q(x, y)/∂x =

M(x, y). For example, we might choose

Q(x, y) =
∫ x

x0

M(s, y)ds (6.15)

where x0is some specified constant inα < x0 < β. The function h

in Eq.(6.14) is an arbitrary differentiable function of y, playing the

role of the arbitrary constant. Now we must show that it is always

possible to choose h(y) so that the second of Eqs(6.12) is satisfied,

that is, ψy = N . By differentiating Eq.(6.14) with respect to y

and setting the result equal to N(x, y), we obtain

ψy(x, y) =
∂Q

∂y
(x, y) + h′(y) = N(x, y).
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Then, solving for h′(y), we have

h′(y) = N(x, y)− ∂Q

∂y
(x, y). (6.16)

In order for us to determine h(y) from Eq.(6.16), the right side

of Eq.(6.16), despite its appearance, must be a function of y only.

To establish that this is true, we can differentiate the quantity in

question with respect to x, obtaining

∂N

∂x
(x, y)− ∂

∂x

∂Q

∂y
(x, y). (6.17)

By interchanging the order of differentiation in the second term of

Eq.(6.17), we have

∂N

∂x
(x, y)− ∂

∂y

∂Q

∂x
(x, y),

or, since ∂Q/∂x = M,

∂N

∂x
(x, y)− ∂M

∂y
(x, y),

which is zero on account of Eq.(6.11). Hence, despite its apparent

form, the right side of Eq.(6.16) does not, in fact, depend on x.

Then we find h(y) by integrating Eq.(6.16), and upon substituting

this function in Eq.(6.14), we obtain the required function ψ(x, y).

This completes the proof.
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Example 2 Solve the differential equation

(y cosx+ 2xey) + (sinx+ x2ey − 1)y′ = 0 (6.18)

Solution

Here taking

M = y cosx+ 2xey and N = sinx+ x2ey − 1,

we obtain

My(x, y) = cosx+ 2xey = Nx(x, y).

Hence the given equation is exact. Thus there is a ψ(x, y) such

that

ψx(x, y) = y cosx+ 2xey (6.19)

and

ψy(x, y) = sinx+ x2ey − 1. (6.20)

Integrating (6.19) with respect to x, we obtain

ψ(x, y) = y sinx+ x2ey + h(y), (6.21)

where h(y) is a function of y alone.

Setting ψy = N , from (6.21) and (6.20) we obtain

ψy(x, y) = sinx+ x2ey + h′(y) = sinx+ x2ey − 1.

Thus h′(y) = −1 and which on integration yields,

h(y) = −y.
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The constant of integration can be omitted since any solution of

the differential equation h′(y) = −1 is satisfactory; we do not

require the most general one. Substituting for h(y) in Eq.(6.21)

gives

ψ(x, y) = y sinx+ x2ey − y.

Hence solutions of Eq.(6.18) are given implicitly by

y sinx+ x2ey − y = c (6.22)

Example 3 (A differential equation that is not exact) Examine

that differential equation

(3xy + y2) + (x2 + xy)y′ = 0 (6.23)

cannot be solved using the method discussed above.

Solution

Here taking

M = 3xy + y2 and N = x2 + xy,

we obtain

My(x, y) = 3x+ 2y, Nx(x, y) = 2x+ y;

Since My 6= Nx, the given equation is not exact. Hence the

procedure described above cannot produce a solution. We post-

pone the work of solving of this equation to the section Integrating

Factors, but only see that it cannot be solved by the procedure
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described above. For this, let us seek a function ψ such that

ψx(x, y) = 3xy + y2 (6.24)

and

ψy(x, y) = x2 + xy. (6.25)

Integrating , (6.24) yields

ψ(x, y) =
3
2
x2y + xy2 + h(y), (6.26)

where h is an arbitrary function of y alone. To try to satisfy the

equation (6.25), we compute ψy from Eq.(6.26) and set it equal to

N, yielding
3
2
x2 + 2xy + h′(y) = x2 + xy

or

h′(y) = −1
2
x2 − xy. (6.27)

Since the right side of Eq.(6.27) depends on both x and y, it is

impossible to solve Eq.(6.27) for h(y). Thus there is no ψ(x, y)

satisfying both of Eqs.(6.24) and (6.25).

Working Method for Solving the Exact Equation

The following method helps to solve exact equation in an easy way.

If the differential equation

M(x, y) +N(x, y)y′ = 0
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or, equivalently written in the form

M dx+N dy = 0

satisfies the (necessary) condition

∂M

∂y
=
∂N

∂x
,

then it is exact. Then its solution is given by∫
Mdx+

∫
(terms in N not involving x) dy = c. (6.28)

Example 4 Show that the equation

(1 + 4xy + 2y2)dx+ (1 + 4xy + 2x2)dy = 0

is exact and solve it.

Solution

Here M = 1 + 4xy + 2y2and N = 1 + 4xy + 2x2.

Differentiating M partially with respect to y, we get

∂M

∂y
= 4x+ 4y

and differentiating N partially with respect to x, we get

∂N

∂x
= 4x+ 4y,
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so that
∂M

∂y
=
∂N

∂x
.

Hence, using (6.28),∫
(1 + 4xy + 2y2)dx+

∫
(1)dy = c

i.e.,

x+ 2x2y + 2xy2 + y = c

is the general solution.

Example 5 Solve the equation (1 + y) dy
dx = 1− x.

Solution

The given equation is

(1 + y)dy = (1− x)dx.

That is,

(1− x)dx− (1 + y)dy = 0.

Then, M = 1− x and N = −(1 + y) and

∂M

∂y
= 0 =

∂N

∂x

and hence the equation is exact and its solution is given by

x− x2

2
− y − y2

2
= c.
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Example 6 Solve the initial value problem

(y − 1)dx+ (x− 3)dy = 0; y(0) =
2
3
.

Solution

Here M = y − 1 and N = x− 3, and since

∂M

∂y
= 1 =

∂N

∂x
,

the given differential equation is exact.

Hence, using (6.28), we obtain the general solution as

xy − x− 3y = c.

Next to find the particular solution

Using the initial condition that y = 2
3at x = 0, we get the par-

ticular value of c as c = −2, so the unique solution to the initial

value problem is

xy − x− 3y = −2

or

xy − x− 3y + 2 = 0.

Exercises

Examine that the following equations are exact and then solve.

1.
(
x+ 2

y

)
dy + ydx = 0

2. (y − x3) dx+ (x+ y3) dy = 0
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3. (y + y cos xy) dx+ (x+ x cosxy) dy = 0

4. (sin x sin y − xey) dy = (ey + cos x cos y)dx

5. dy
dx = −ax+by

bx+cy

6. (ex sin y − 2y sinx)dx+ (ex cos y + 2 cos x)dy = 0

7. (yexy cos 2x− 2exy sin 2x+ 2x)dx+ (xexy cos 2x− 3)dy = 0

8. (y/x+ 6x)dx+ (ln x− 2)dy = 0; x > 0

9. Solve the given initial value problem and determine at least

approximately where the solution is valid.

(2x− y)dx+ (2y − x)dy = 0, y(1) = 0

10. Find the value of b for which the given equation is exact,

and then solve it using that values of b.

(xy2 + bx2y)dx+ (x+ y)x2dy = 0

11. Assume that the equation

M(x, y) +N(x, y)y′ = 0,

meets the requirements of Theorem 1 in a rectangle R and

is therefore exact. Show that a possible function ψ(x, y)is

ψ(x, y) =
∫ x

x0

M(s, y0)ds+
∫ y

y0

N(x, t)dt,
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where (x0, y0) is a point in R.

12. Show that any separable equation

M(x) +N(y)y′ = 0

is also exact.

Answers

1. xy + ln y2 = c.

2. 4xy − x4 + y4 = c.

3. xy + sinxy = c.

4. xey + sinx cos y = c.

5. ax2 + 2bxy + cy2 = k

6. y = 0 is a solution. General solution is ex sin y+2y cosx = c;

7. exy cos 2x+ x2 − 3y = c

8. y lnx+ 3x2 − 2y = c

9. y = [x+
√

28− 3x2]/2, |x| <
√

28/3

10. b = 3, x2y2 + 2x3y = c

6.2 Integrating factors

Sometimes a given differential equation

M(x, y)dx+N(x, y)dy = 0 (6.29)
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may not be exact, but can be made exact by multiplying it by

a suitable non-zero function µ(x, y). This function is called an

integrating factor of equation (6.29). [Recall that this is the

procedure that we used in solving linear differential equations].

Method of Finding the Integrating Factor

The integrating factor µ(x, y) of the differential equation

M(x, y)dx+N(x, y)dy = 0

is determined using solving the differential equation

dµ

dx
=
My −Nx

N
µ.

If My−Nx

N is a function of x only, then there is an integrating factor

µ(x, y) = µ(x) that depends only on x; further µ(x) can be found

by solving the above equation, which is both linear and separable.

Example 7 Solve the differential equation

x dy − y dx = 0. (6.30)

Solution

The given differential equation is

−y dx+ x dy = 0.

Here

M = −y, N = x.
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The above differential equation is not exact, since

My = ∂M
∂y = −1 and Nx = ∂N

∂x = 1.

Now
dµ

dx
=
My −Nx

N
µ =

−1− 1
x

µ.

This implies
dµ

µ
= −2

dx

x
..

Integrating,

lnµ = −2 lnx = lnx−2 = ln( 1
x2 ).

Hence µ = 1
x2 is an integrating factor. Now, multiplying the given

differential equation with the integrating factor, we obtain

µ(−ydx+ xdy) = 0

i.e.,

− y

x2
dx+

1
x
dy = 0.

On integrating, the above exact equation gives∫
−y
x2
dx+

∫
0 · dy = c.

i.e.,
y

x
= c,

which is the general solution of the given differential equation.
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Example 8 Make the following equation exact and hence solve:

y dx+ (x2y − x)dy = 0.

Solution

The given equation is not exact, since

∂M

∂y
= 1 6= 2xy − 1 = −∂N

∂x
.

Now, we have

My −Nx

N
=

1− (2xy − 1)
x2y − x

=
−2(xy − 1)
x(xy − 1)

= −2
x
,

which is a function only of x. Hence,

µ = e
∫
−(2/x) dx = e−2 ln x = x−2

is an integrating factor for the given differential equation. Multi-

plying the given equation by x−2,

x−2y dx+ (y − x−1)dy = 0

and hence solution is

−x−1y +
y2

2
= c.

II. If the expression
My −Nx

−M
(6.31)
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is a function of y alone, say h(y), then

µ = e
∫

h(y) dy (6.32)

is also a function only of y which satisfies the equation

1
µ

(
N
∂µ

∂x
−M

∂µ

∂y

)
=
∂M

∂y
− ∂N

∂x
.

and is hence an integrating factor for

M(x, y) dx+N(x, y) dy = 0.

III. There is another useful technique for converting simple nonex-

act equations into exact ones. We illustrate this in the following

example.

Example 9 Solve the equation

y dx+ (x2y − x) dy = 0.

Solution

A rearrangement of the above differential equation gives

x2y dy − (x dy − y dx) = 0. (6.33)

We recall the differential formula

d
(y
x

)
=
x dy − y dx

x2
. (6.34)
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We divide Eq.(6.33) by x2, and obtain it in the form

y dy − x dy − y dx

x2
= 0.

and using (6.34) this can be written as

ydy − d(y/x) = 0.

Hence general solution is

1
2
y2 − y

x
= c.

Some Differential Formulas

In the above example, we have found an integrating factor for

the given differential equation by noticing in it the combination

x dy − y dx and using d(y/x) = (x dy − y dx)/x2 to exploit this

observation. The following are some other differential formulas

that are often useful in similar circumstances:

d

(
x

y

)
=
ydx− xdy

y2
(6.35)

d (x, y) = x dy + y dx (6.36)

d
(
x2 + y2

)
= 2(x dx+ y dx) (6.37)
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d

(
tan−1 x

y

)
=
ydx− xdy

x2 + y2
(6.38)

d

(
ln
x

y

)
=
ydx− xdy

xy
(6.39)

We see from these formulas that the very simple differential equa-

tion

ydx− xdy = 0

has

1/x2, 1/y2, 1/(x2 + y2), and 1/xy

as integrating factors, and thus can be solved in this manner in a

variety of ways.

Exercises

In Exercises 1-6, show that the given function is not exact but

becomes exact when multiplied by the given integrating factor.

Then solve the differential equation:

1. 2ydx+ xdy = 0, x

2. sin ydx+ cos ydy = 0, ex

3. xdy − ydx = 0, 1
x2

4. y2dx+ (1 + xy)dy, exy

5. 2 cosπydx = π sinπydy, e2x

6. y cosxdx+ 3 sinxdy = 0, y2
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7. x2y3 + x(1 + y2)y′ = 0, µ(x, y) = 1/xy3

8.
(

sin y
y − 2e−x sinx

)
dx +

(
cos y+2e−x cos x

y

)
dy = 0, µ(x, y) =

yex

Find integrating factors and solve the following initial value

problems.

9. 2dx+ secx cos ydy = 0, y(0) = 0

10. 2x2dx− 3xy2dy = 0, y(1) = 0

11. 2 sin y dx + cos y dy = 0, y(0) = π
2

12. (2y + xy) + 2xdy = 0, y(3) =
√

2

13. Show that if (Nx −My)/M = Q, where Q is a function of y

only, then the differential equation

M +Ny′ = 0

has an integrating factor of the form

µ(y) = exp
∫
Q(y)dy.

Answers

1. x2y = c

2. ex sin y = c

3. y = cx4.yexy = c

4. e2x cosπy = c

5. ex sin y = c
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6. y = 0 is a solution. General solution is x2+2 ln |y|−y−2 = c.

7. ex sin y + 2y cosx = c.

8. µ = 1
(y+1)2

; x+ 1 = c(y + 1)

9. µ = cosx ; 2 sinx+ sin y = 0

10. µ = e2x; e2x sin y = 1

Table

Differential

equation

Integrating

Factor

Exact

Differential

Equation

General

solution

x dy −
y dx = 0

1
x2

xdy−ydx
x2 = 0 y

x = c

x dy −
y dx = 0

1
y2

ydx−xdy
y2 = 0 x

y = c

x dy −
y dx = 0

1
xy

xdy−ydx
xy = 0 ln y

x = c

x dy −
y dx = 0

1
x2+y2

xdy−ydx
x2+y2 = 0 tan−1 y

x=c

x dy −
y dx = 0

1
(xy)n

xdy+ydx
xy = 0* lnxy = c*

x dy −
y dx = 0

1
(x2+y2)n

xdx+ydy
x2+y2 = 0* ln

√
x2 + y2=c*

*for n=1



Chapter 7
Existence and Uniqueness of

Solutions - Picard’s Iteration

Method

We begin with some initial value problems.

7.1 Existence and Uniqueness of Solutions

(i) The initial value problem

∣∣y′∣∣+ |y| = 0, (7.1)

138
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with the initial condition

y(0) = 1 (7.2)

has no solution because y ≡ 0 is the only solution of the differential

equation (7.1).

(ii) The initial value problem y′ = t, y(0) = 1 has precisely one

solution , namely y = t2

2 + 1.

(iii) The initial value problem ty′ = y − 1, y(0) = 1 has infinitely

many solutions, namely , y = 1 + ct, where c is arbitrary.

Remark From these examples we see that an initial value problem

y′ = f(t, y), y(t0) = y0 (7.3)

may have none, one, or more than one solution. This leads to the

following two fundamental questions.

1. Problem of existence Under what conditions does an initial

value problem of the form (7.3) have at least one solution?

2. Problem of uniqueness Under what conditions does the

problem have a unique solution, that is, only one solution?

Existence and Uniqueness Theorem If f and ∂f
∂y are con-

tinuous in a rectangle R : |t| < a, |y| < b, then there is some

interval |t| ≤ h < a in which there exists a unique solution y = φ(t)

of the initial value problem

y′ = f(t, y), y(0) = 0. (7.4)
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The solution mentioned in the Existence and Uniqueness Theorem

has the form

φ(t) =
∫ t

0
f(s, φ(s))ds, (7.5)

where we have made use of the initial condition φ(0) = 0.

Since Eq. (7.5) contains an integral of the unknown function φ,

it is called an integral equation. This integral equation is not

a formula for the solution of the initial value problem, but it does

provide another relation satisfied by any solution of Eqs. (7.4).

Conversely, suppose that there is a continuous function y = φ(t)

that satisfies the integral equation (7.5); then, it can be shown

that, this function also satisfies the initial value problem (7.4).

One method of showing that the integral equation (7.5) has a

unique solution is known as the method of successive approx-

imations or Picard’s iteration method.

In Picard’s iteration method, we start by choosing an initial

function φ0, either arbitrarily or to approximate in some way the

solution of the initial value problem. The simplest choice is

φ0(t) = 0; (7.6)

then φ0 at least satisfies the initial conditions in Eqs.(7.4), al-

though not the differential equation. The next approximation φ1

is obtained by substituting φ0(s) for φ(s) in the right side of Eq.
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(7.5) and calling the result of this operation φ1(t). Thus

φ1(t) =
∫ t

0
f(s, φ0(s))ds.

Similarly, φ2 is obtained from φ1 using the following:

φ2(t) =
∫ t

0
f(s, φ1(s))ds.

In general,

φn+1(t) =
∫ t

0
f(s, φn(s))ds. (7.7)

Example 1 Solve the initial value problem

y′ = 2t(1 + y), y(0) = 0 (7.8)

by the method of successive approximations.

Solution

Note first that if y = φ(t), then the corresponding integral

equation is

φ(t) =
∫ t

0
2s[1 + φ(s)]ds. (7.9)

If the initial approximation is φ0(t) = 0, it follows that

φ1(t) =
∫ t

0
2s[1 + φ0(s)]ds =

∫ t

0
2sds = t2. (7.10)
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Similarly,

φ2(t) =
∫ t

0
2s[1 + φ1(s)]ds =

∫ t

0
2s[1 + s2]ds = t2 +

t4

2
(7.11)

and

φ3(t) =
∫ t

0
2s[1+φ2(s)]ds =

∫ t

0
2s
[
1 + s2 +

s4

2

]
ds = t2+

t4

2
+

t6

2 · 3
.

(7.12)

Equations (7.10), (7.11), and (7.12) suggest that

φn(t) = t2 +
t4

2!
+
t6

3!
+ · · ·+ t2n

n!
(7.13)

for each n ≥ 1, and this result can be established by mathematical

induction, as follows. Equation (7.13) is certainly true for n = 1;

see Eq. (7.10). We must show that if it is true for n = k, then it

also holds for n = k + 1. We have

φk+1(t) =
∫ t

0
2s[1 + φk(s)]ds

=
∫ t

0
2s
(

1 + s2 +
s4

2!
+ · · ·+ s2k

k!

)
ds

= t2 +
t4

2!
+
t6

3!
+ · · ·+ t2k+2

(k + 1)!
(7.14)

and the inductive proof is complete.

Remark to Example It follows from Eq. (7.13) that φn(t) is
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the nth partial sum of the infinite series

∞∑
k=1

t2k

k!
; (7.15)

hence lim
n→∞

φn(t) exists if and only if the series (7.15) converges.

Applying the ratio test, we see that, for each t,∣∣∣∣ t2k+2 k!
(k + 1)!t2k

∣∣∣∣ =
t2

k + 1
→ 0 as k →∞. (7.16)

Thus the series (7.15) converges for all t, and its sum φ(t) is the

limit of the sequence {φn(t)}. Further, since the series (7.15) is a

Taylor series, it can be differentiated or integrated term by term

as long as t remains within the interval of convergence, which in

this case is the entire t-axis. Therefore, we can verify by direct

computation that φ(t) =
∑∞

k=1
t2k

k! is a solution of the integral

equation (7.9). Alternatively by substituting φ(t)for y in Eqs.

(7.8), we can verify that this function satisfies the initial value

problem. Identifying φ in terms of elementary functions, we have

the solution of the given IVP as φ(t) = et
2 − 1.

Working Rule (Picard’s Iteration Method)

Consider the initial value problem

y′ = f(t, y), y(t0) = y0. (7.17)
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Then Picard’s iterative formula is

yn+1 = y0 +
∫ t

t0

f(t, yn)dt(n = 1, 2, 3, . . . ) (7.18)

Example 2 Find approximate solutions by Picard’s iteration method

to the initial value problem y′ = 1 + y2 with the initial condition

y(0) = 0. Hence find the approximate value of y at t = 0.1 and

t = 0.2.

Solution Picard’s iteration’s (n+1)th step is given by (7.18).

In this problem

f(t, y) = 1 + y2; t0 = 0, y0 = y(t0) = y(0) = 0,

and hence

f(t, yn) = 1 + y2
n.

Substituting these values in (7.18), we obtain

yn+1 = 0 +
∫ t

0

(
1 + y2

n

)
dt(n = 1, 2, 3, . . . )

i.e., yn+1 = t+
∫ t
0 y

2
ndt (n = 1, 2, 3, . . . )

Step 1 (n = 0):

y1 = t+
∫ t

0
y2
0dt
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Putting y0 = 0, we obtain

y1 = t+
∫ t

0
02dt = t.

Step 2 (n = 1):

y2 = t+
∫ t

0
y2
1dt

Putting y1 = t, we obtain

y2 = t+
∫ t

0
t2dt = t+

1
3
t3.

Step 3 (n = 2):

y3 = t+
∫ t

0
y2
2dt

Putting y2 = t+ 1
3 t

3, we obtain

y3 = t+
∫ t

0

(
t+

1
3
t3
)2

dt

= t+
1
3
t3 +

2
15
t5 +

1
63
t7.

We can continue the process. But we take the above as an ap-

proximate solution to the given initial value problem. That is,

y = y(t) = t+
1
3
t3 +

2
15
t5 +

1
63
t7. (7.19)
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Substituting t = 0.1, and t = 0.2, in (7.19), we obtain

y(0.1) = 0.100334

and

y(0.2) = 0.202709.

The above are not exact values for y at the given x points, but

the approximate values.

Remark to Example The exact solution to the initial value

problem y′ = 1 + y2; y(0) = 0 can be obtained by separating

variables and the solution is given by

y(t) = tan t.

Also the series corresponding to tanx is

tanx = x+
1
3
x3 +

2
15
x5 +

17
315

x7 + . . .
(
−π

2
< x <

π

2

)
i.e.,

y(x) = tanx = x+
1
3
x3 +

2
15
x5 +

17
315

x7 + . . . (7.20)

The first three terms of y3 and the series in (7.20) are the same.

The series in (7.20) converges for |x| < π
2 , and we can expect

that our sequence y1, y2, . . . converges to a function which is the

solution of our problem for |x| < π
2 .

Exercises
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In Exercises 1-7, solve the initial value problem by Piacrd’s itera-

tion method (Do three steps). Also find the exact solution.

1. y′ = y, y(0) = 1.

2. y′ = x+ y, y(0) = −1.

3. y′ = xy + 2x− x3, y(0) = 0.

4. y′ = y − y2, y(0) = 1
2 .

5. y′ = y2, y(0) = 1.

6. y′ = 2
√
y, y(1) = 0.

7. y′ = 3y
x , y(1) = 1.

In Exercises 8-15, solve the initial value problem by Picard’s

iteration method (Do four steps). Also find the value of y at

the given points of x.

8. y′ = 2x− y, y(1) = 3. Also find y(1.1).

9. y′ = x− y, y(0) = 1. Also find y(0.2).

10. y′ = x2y, y(1) = 2. Also find y(1.2).

11. y′ = 3x+ y2, y(0) = 1. Also find y(0.1).

12. y′ = 2x+ 3y, y(0) = 1. Also find y(0.25).

13. 2 dy
dx = x+ y, y(0) = 2. Also find y(0.1).

14. dy
dx + y

x = 1
x2 , y(1) = 1. Also find y(1.1).
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15. dy
dx − xy = 1, y(0) = 1. Also find y(1). Compare with the

exact solution and exact value.

16. Obtain the approximate solution of

dy

dx
= x+ x4y, y(0) = 3

by Picard’s iteration method. Tabulate the values of y, for

x = 0.1(0.1)0.5, 3D.

Attention! In Exercise 13-15, first bring the differential equa-

tion to the standard form (7.17) before starting Picard’s iteration

procedure.

Answers

1. The approximations approach the exact solution y = ex.

2. y0 = 1, y n = −1− x+ xn+1

(n+1)! , y = −1− x

3. yn = x2 − x2n+2

2n(n+1)! , y = x2

4. y0 = 1
2 , y1 = 1

2 + x
4 , y2 = 1

2 + x
4 −

x3

48 , y3 = 1
2 + x

4 −
x3

48 +
x5

480 −
x7

16128 Exact solution is y = 1
1+e−x

8 yn = 2 + x2 −
∫ x
1 xyn−1dx, y1 = x2 − 3x+ 5,

y2 = −x3

3 + 5
2x

2 − 5x+ 35
6 ; y(1) = 2.9147

9 y4 = 1− x+ x2 − x3

3 + x4

12 −
x5

120 ; y(0.2) = 0.837.

10 2.544

11 1.1264
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12 2.1826

13 y2 = 3 + x2

2 + 3x5

5 + x7

14 + 3x10

50 ; 2.105

14 0.995

15 yn(x) = 1 + x+
∫ x
0 xyn−1(x)dx, y1(x) = 1 + x+ x2

2 etc.

Exact solution (considering the given equation as linear dif-

ferential equation) is y = e
x2

2

(∫ x
0 e

x2

2 dx+ 1
)



Chapter 8
Differential Equations of

Second Order

8.1 Differential Equations of Second Order

In this chapter we consider the solution of second order differential

equations.

Definition A second order differential equation is said to be linear

if it can be written in the form

y′′ + p(t)y′ + q(t)y = r(t). (8.1)

If r(t) = 0 for every t, then equation (8.1) is said to be homoge-

150
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neous; otherwise called nonhomogeneous. For example,

y′′ + 4ty′ + (t2 − 3)y = 0

is a homogeneous equation and

y′′ + 4y′ + t2y = e−t sin t

is a nonhomogeneous equation.

Any differential equation of the second order which cannot be

written in the form (8.1) is said to be nonlinear. For example,

y′′y + y′ = 0

and

y′′ + (ty′)2 = cos t

are nonlinear differential equations.

The functions p and q in (8.1) are called coefficients of the

equation.

Remark Instead of Eq. (8.1) we may have equations of the form

P (t)y′′ +Q(t)y′ +R(t)y = G(t). (8.2)

If P (t) 6= 0, we can divide Eq.(8.2) by P (t) and obtain Eq. (8.1)

with

p(t) =
Q(t)
P (t)

, q(t) =
R(t)
P (t)

, r(t) =
G(t)
P (t)

.
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Definition (Solution of a second order differential equation) A

function

y = ϕ(t)

is called a solution of a linear or nonlinear differential equation

of the second order on some interval, say a < t < b (perhaps

infinite), if ϕ(t) is defined and twice differentiable throughout that

interval and is such that the equation becomes an identity when

we replace the unspecified functions y and its derivatives by ϕ and

its corresponding derivatives.

Example 1 Verify that the functions y = cos t and y = sin t are

solutions of the homogeneous linear differential equation y′′ + y =

0.

Solution

y = cos t is defined and twice differentiable for all t. Also y′ =

− sin t and y′′ = cos t, and substitution of these values in the given

differential equation gives

− cos t+ cos t = 0,

an identity. Hence y = cos t is a solution to the given differential

equation. Similarly, it can be shown that y = sin t is also a solution

of the given differential equation.

Theorem Fundamental Theorem (Principle of Superposi-

tion)

If y1 and y2 are two solutions of the linear homogeneous differential
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equation

L[y] = y′′ + p(t)y′ + q(t)y = 0, (8.3)

then the linear combination c1y1 + c2y2 is also a solution for any

values of the constants c1 and c2.

Example 2 Verify that the functions y = 7 cos t and y =
√

2 cos t+

9 sin t are solutions of the homogeneous linear differential equation

y′′ + y = 0.

Solution

By Example 1,y = cos t and y = sin t are solutions of the given

differential equation. Hence, by Theorem any linear combination

of cos t and sin t, in particular y = 7 cos t andy =
√

2 cos t+9 sin t,

is a solution of the differential equation.

Attention: The fundamental theorem does not hold for nonho-

mogeneous linear differential equations or for nonlinear differential

equations. We illustrate this in the following examples.

Example 3 (A nonhomogeneous linear differential equation for

which fundamental theorem fails)

Substitution shows that the functions

y = 1 + cos t

and

y = 1 + sin t
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are solutions of the nonhomogeneous linear differential equation

y′′ + y = 1,

but the functions

2 (1 + cos t) and (1 + cos t) + (1 + sin t)

are not solutions of this differential equation, showing that fun-

damental theorem fails in the case of nonhomogeneous linear dif-

ferential equations.

Example 4 (A nonlinear differential equation for which funda-

mental theorem fails)

Substitution shows that the functions

y = t2 and y = 1

are solutions of the nonlinear differential equation

y′′y − ty′ = 0,

but the functions

−t2 and t2 + 1

are not solutions of this differential equation, showing that funda-

mental theorem fails in the case of nonlinear differential equation.

General Solution, Basis

Definition Two functions y1(t) and y2(t) are said to be linearly

dependent on an interval I where both functions are defined, if

they are proportional on I, i.e., if
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(a) y1(t) = ky2(t) or (b) y2(t) = ly1(t)

holds for all t on I ; here k and l are numbers, zero or not. If the

functions are not proportional on I, they are said to be linearly

independent.

Note If one of the functions y1 and y2 is identically zero on I,

then the functions are linearly dependent on I.

Example 5 The functions

y1 = 6t and y2 = 4t

are linearly dependent on any interval, since y1 = 6
4y2.

But the functions

y1 = t2 and y2 = t

are linearly independent on any interval because y1

y2
= t 6= k,(i.e.,

y1

y2
is not constant), so that no relation of the form y1 = ky2 or

y2 = ly1 can hold.

Similarly, it can be seen that

(a) cos t and sin t are linearly independent

(b) e2t and e−2t are linearly independent

(c) The functions y1 = t and y2 = t+ 1are linearly

independent on any interval.

Definition (Basis) Two linearly independent solutions of a linear

homogeneous second order differential equation on an interval I is

called a basis or a fundamental system of solutions on I.
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Theorem 2 A solution

y(t) = c1y1(t) + c2y2(t)

(c1, c2 arbitrary constants) is a general solution of the homo-

geneous second order differential equation

y′′ + p(t)y′ + q(t)y = 0

on an interval I of the t-axis if and only if the functions y1 and y2

constitute a basis of solutions of the differential equation on I,

i.e., if and only if they are not proportional on I.

Example 6 The functions y1 = e−t and y2 = e2t are solutions* of

the equation y′′−y′−2y = 0. Since y1

y2
= e−3t is not a constant, the

solutions are linearly independent; hence they constitute a basis,

and the corresponding general solution for all t is

y = c1y1 + c2y2 = c1e
−t + c2e

2t.

*The method of finding the solutions will be discussed later.

Example 7 The functions y1 = et and y2 = 3et are solutions of

the equation y′′ − 2y′ + y = 0. Since y2 = 3y1,the solutions are

linearly dependent; hence they do not form a basis.

Initial Value Problems and Boundary Value Problems

Since the general solution to a second order differential equa-
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tion

y′′ + p(t)y′ + q(t)y = 0. (8.4)

contains two arbitrary constants, we need two conditions for ob-

taining a particular solution. In some cases these two conditions

are of the type

y(t0) = K, y′(t0) = L (8.5)

where t = t0 is a given point and K and L are given numbers.

The conditions in (8.5) are called initial conditions. Equation

(8.4) and conditions (8.5) together constitute what is known as an

initial value problem.

Some times the two conditions are of the type

y(A) = k1, y(B) = k2. (8.6)

These are called boundary conditions since they refer to the

end points (boundary points)A, B of an interval I. Eq. (8.4) and

conditions (8.6) together constitute what is known as a boundary

value problem.

Example 8 (Initial Value Problem) Solve the initial value prob-

lem

y′′ − y′ − 2y = 0, y(0) = 4, y′(0) = 1 ,

where it is given that y1 = e−x and y2 = e2x form a fundamental
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system of solutions of the given differential equation.

Solution

A general solution1 of the equation y′′ − y′ − 2y = 0 is given by

y = y(t) = c1e
−t + c2e

2t.

Hence, by the first initial condition,

y(0) = c1e
0 + c2e

0,

and so

c1 + c2 = 4. (8.7)

Differentiation of the general solution gives the function

y′ = y′(t) = −c1e−t + 2c2e2t.

y′(0) = −c1e0 + 2c2e0

and so

1 = −c1 + 2c2. (8.8)

Solving the Eqs. (8.7) and (8.8), we obtain

c1 =
7
3
, c2 =

5
3
.

1Method of finding general solution of a second order differential equation
will be discussed in the coming chapters.
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Hence the solution to the initial value problem is given by

y = y(t) =
7
3
e−t +

5
3
e2t.



Chapter 9
Solutions of Linear

Homogeneous

Equations-Wronskian

In this chapter we give a general theory for the solution of homo-

geneous equations

y′′ + p(t)y′ + q(t)y = 0 (9.1)

with continuous, but otherwise arbitrary variable coefficients f

and g.

160
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9.1 Linear Homogeneous Equations

Theorem 1 (Existence and Uniqueness Theorem for Initial Value

Problems) consider the initial value problem

y′′ + p(t)y′ + q(t) y = g(t), y(t0) = y0, y
′(t0) = y′0 (9.2)

where p, q and g are continuous functions on some open interval

I that contains the point t0 . Then there exactly one solution

y = φ(t),of this problem and the solution exists throughout the

interval I.

Example 1 Find the longest interval in which the solution of the

initial value problem

(t2 − 3t)y′′ + ty′ − (t+ 3)y = 0, y(1) = 2, y′(1) = 1

is certain to exist.

Solution

If the given differential equation is written in the form of

Eq.(9.2), then

p(t) =
1

t− 3
, q(t) = − t+ 3

t(t− 3)
, and g(t) = 0.

The only points of discontinuity of the coefficients are t = 0 and

t = 3. Therefore, the longest open interval, containing the initial

point t = 1, in which all the coefficients are continuous is 0 < t < 3.

Thus, this is the longest interval in which Theorem guarantees that
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the solution exists.

Example 2 Find the unique solution of the initial value problem

y′′ + p(t)y′ + q(t)y = 0, y(t0) = 0, y′(t0) = 0,

where p and q are continuous in an open interval I containing t0.

Solution

Obviously the function y = φ(t) = 0 for all t in I satisfies

the differential equation and initial conditions. By the uniqueness

part of Theorem, it is the only solution of the given problem.

Theorem 2 Fundamental Theorem (Principle of Superpo-

sition) If y1 and y2 are two solutions of the linear homogeneous

differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0, (9.3)

then the linear combination c1y1 + c2y2 is also a solution for any

values of the constants c1 and c2.

Proof

L[c1y1 + c2y2] = [c1y1 + c2y2]′′ + p[c1y1 + c2y2]′ + q[c1y1 + c2y2]

= c1y1
′′

+ c2y2
′′

+ c1py1
′
+ c2py2

′
+ c1qy1 + c1qy1 + c2qy2

= c1[y1
′′

+ py1
′
+ qy1] + c2[y2

′′
+ py2

′
+ qy2]

= c1L[y1] + c2L[y2]

= c1 · 0 + c2 · 0 since L[y 1] = 0 and L[y 2]

= 0.
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Hence the theorem.

Remark A special case of Theorem occurs if either c1 or c2 is

zero. Then we conclude that any constant multiple of a solution

of Eq.(9.3) is also a solution.

Definition (Wronskian) Wronskian of two solutions y1 and y2

of the homogeneous differential equation

y′′ + p(t)y′ + q(t)y = 0 (9.4)

is defined by

W [y1, y2] =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ = y1y
′
2 − y2y

′
1.

Theorem 3 Suppose that y1 and y2 are two solutions of

L[y] = y′′ + p(t)y′ + q(t)y = 0 (9.5)

and that the initial conditions

y(t0) = y0, y′(t0) = y′0 (9.6)

are assigned. Then it is always possible to choose the constant

c1, c2 so that

y = c1y1(t) + c2y2(t)

satisfies the differential equation (9.5) and the initial conditions
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(9.6) if and only if the Wronskian

W [y1, y2] = y1y
′
2 − y′1y2

is not zero at t0.

Example 3 y1(t) = e−2t and y2(t) = e−3tare solutions of the

differential equation

y′′ + 5y′ + 6y = 0.

Find the Wronskian of y1 and y2. Comment.

Solution

The Wronskian of these two functions is

W =

∣∣∣∣∣ e−2t e−3t

−2e−2t −3e−3t

∣∣∣∣∣ = −e−5t.

Since W is nonzero for all values of t, the functions y1 and y2 can

be used to construct solutions of the given differential equation,

together with initial conditions prescribed at any value of t.

The next theorem justifies the term “general solution” that we

are used for the linear combinationc1y1 + c2y2.

Theorem 4 Suppose that y1 and y2 are two solutions of the dif-

ferential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0. (9.7)
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Then the family of solutions

y = c1y1(t) + c2y2(t)

with arbitrary coefficients c1 and c2 includes every solution of

Eq.(9.7) if and only if there is a point t0 where the Wronskian

of y1 and y2 is not zero.

Theorem states that, if and only if the wronskian of y1 and y2 is

not everywhere zero, then the linear combination c1y1 + c2y2 con-

tains all solutions of Eq.(9.7). It is therefore natural (and we have

already done this in the preceding chapter) to call the expression

y = c1y1(t) + c2y2(t),

with arbitrary constant coefficients, general solution of Eq.(9.7).

The solutions y1 and y2 are said to form a fundamental set of

solutions of Eq.(9.7) if and only if their wronskian is nonzero.

Example 4 The functions y1 = t and y2 = t + 1 from a funda-

mental set of solutions, since

W (y1, y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣ t 1 + t

1 1

∣∣∣∣∣ = t− (1 + t) = 1 6= 0.

Example 5 y1(t) = cosωt and y2(t) = sinωt are solutions of
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y′′ + ω2y = 0. Their Wronskian is

W (y1, y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣ cosωt sinωt

−ω sinωt ω cosωt

∣∣∣∣∣
= ω(cos2 ωt+ sin2 ωt) = ω.

Hence y1 and y2 are fundamental set of solutions (i.e., linearly

independent) if and only if ω 6= 0.

Example 6 The solutions e−4t and te−4t are fundamental set of

solutions of y′′ + 8y′ + 16y = 0, since

W (y1, y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣ e−4t xe−4t

−4e−4t e−4t − 4te−4t

∣∣∣∣∣ 6= 0

for any value of t. Hence a general solution of y′′ + 8y′ + 16y = 0

on any interval y = (c1 + c2t)e−4t.

Example 7 Suppose that y1(t) = er1t and y2(t) = er2t are two

solutions of an equation of the form

y′′ + f(t)y′ + g(t)y = 0

Show that they form a fundamental set of solutions if r1 6= r2.

Solution
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The Wronskian of y1 and y2 is

W (y1, y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣ er1t er2t

r1e
r1t r2e

r2t

∣∣∣∣∣
= (r2 − r1) exp[(r1 + r2)t].

Since the exponential function is never zero, and since we are

assuming that r2 − r1 6= 0, it follows that W is nonzero for every

value of t. Consequently, y1 and y2 form a fundamental set of

solutions.

Example 8 Show that y1(t) = t1/2 and y2(t) = t−1 form funda-

mental set of solutions of

2t2y′′ + 3ty′ − y = 0, t > 0.

Solution

Since

y1
′
(t) = 1

2 t
−1/2 and y1

′′
(t) = −1

4 t
−3/2,

we have

2t2
(
−1

4
t−3/2

)
+ 3t

(
1
2
t−1/2

)
− t1/2 =

(
−1

2
+

3
2
− 1
)
t1/2 = 0.

Hence y1(t) = t1/2 is a solution. Similarly, it can be seen that

y2(t) = t−1 is a solution. It remains to show that they are linearly

independent.
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The Wronskian of y1 and y2 is

W (y1, y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣ t1/2 t−1

1
2 t
−1/2 −t−2

∣∣∣∣∣ = −3
2
t−3/2.

Since W 6= 0 for t > 0, it follows y1 and y2 form a fundamental

set of solutions.

Theorem 5 (Existence of a general solution)

Consider the differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0 (9.8)

whose coefficients p(t) and q(t) are continuous on some open in-

terval I. Choose some point t0 in I. Let y1 be solution of Eq. (9.8)

that also satisfies the initial conditions

y(t0) = 1, y′(t0) = 0,

and let y2 be the solution of Eq. (9.8) that satisfies the initial

conditions

y(t0) = 0, y′(t0) = 1.

Then y1 and y2 form a fundamental set of solutions.

The following example illustrates that a given differential equa-

tion has more than one fundamental set of solutions; indeed, it has

infinitely many.

Example 9 Find the fundamental set of solutions specified by the
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previous Theorem for the differential equation

y′′ − y = 0, (9.9)

using the initial point t0 = 0.

Solution

The characteristic equation is λ2 − 1 = 0. Hence λ = ±1.

Thus two solutions of the given differential equation are

y1(t) = et and y2(t) = e−t.

Also, W (y1, y2) = −2 6= 0, so y1 and y2 form a fundamental set of

solutions. However they are not the fundamental set of solutions

indicated by the previous Theorem because they do not satisfy the

initial conditions mentioned in that theorem at the point t0 = 0.

To find the fundamental solutions specified by the theorem, we

need to find the solutions satisfying the proper initial conditions.

Let us denote by y3(t) the solution of Eq.(9.9) that satisfies the

initial conditions

y(0) = 1, y′(0) = 0. (9.10)

The general solution of Eq.(9.9) is

y = c1e
t + c2e

−t, (9.11)

and the initial conditions (9.10) are satisfied if c1 = 1/2 and c2 =

1/2. Thus

y3(t) =
1
2
et +

1
2
e−t = cosh t.
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Similarly, if y4(t) satisfies the initial conditions

y(0) = 0, y′(0) = 1, (9.12)

then

y4(t) =
1
2
et − 1

2
e−t = sinh t.

Since Wronskian of y3 and y4 is

W (y1, y2)(t) = cosh2 t− sinh2 t = 1 6= 0,

these functions also form a fundamental set of solutions. There-

fore, the general solution of Eq. (9.9) can be written as

y = k1 cosh t+ k2 sinh t, (9.13)

as well as in the form (9.11). We have k1 and k2 for the arbitrary

constants Eq.(9.13) because they are not the same as the constants

c1 and c2 in Eq. (9.11).

Theorem 6 (Abel’s Theorem)

If y1 and y2 are the solutions of the differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0 (9.14)

where p and q are continuous on an open interval I, then the
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Wronskian W (y1, y2)(t) is given by

W (y1, y2)(t) = c exp
[
−
∫
p(t)dt

]
, (9.15)

where c is a certain constant that depends that depends on y1 and

y2, but not on t. Further, W (y1, y2)(t) either is zero for all t in I

(if c = 0) or else is never zero in I (if c 6= 0).

Proof We start by noting that y1 and y2 satisfy

y′′1 + p(t)y′1 + q(t)y1 = 0,

y′′2 + p(t)y′2 + q(t)y2 = 0. (9.16)

If we multiply the first equation by −y2, multiply the second by

y1, and add the resulting equations, we obtain

(y1y
′′
2 − y′′1y2) + p(t)(y1y

′
2 − y′1y2) = 0 (9.17)

Next, we let W (t) = W (y1, y2)(t) and observe that

W ′ = y1y
′′
2 − y′′1y2 (9.18)

Then we can write Eq.(9.17) in the form

W ′ + p(t)W = 0. (9.19)

Equation (9.19) can be solved immediately since it is both a first
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order linear equation and a separable equation. Thus

W (t) = c exp
[
−
∫
p(t)dt

]
, (9.20)

where c is a constant. The value of c depends on which pair of

solutions of Eq. (9.14) is involved. However, since the exponential

function is never zero, W (t) is not zero unless c = 0, in which case

W (t) is zero for all t, which completes the proof of the theorem.

Example 10 Verify that the Wronskian of y1(t) = t1/2 and

y2(t) = t−1 of solutions of the equation

2t2y′′ + 3ty′ − y = 0, t > 0 (9.21)

is given by the equation

W (y1, y2)(t) = c exp
[
−
∫
p(t)dt

]
for some c.

Solution

It can be seen that

W (y1, y2)(t) =

∣∣∣∣∣∣ t
1
2 t−1

1
2 t
−1

2 −t−2

∣∣∣∣∣∣ = −3
2
t−3/2. (9.22)

To use Eq. (9.15) in the Abel’s theorem we must write the differ-

ential equation (9.21) in the standard form with the coefficient of
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y′′ equal to 1. Thus we obtain

y′′ +
3
2t
y′ − 1

2t2
y = 0,

so p(t) = 3/2t. Hence, by Eq. (9.15),

W (y1, y2)(t) = c exp
[
−
∫

3
2t
dt

]
= c exp

(
−3

2
ln t
)

= c t−3/2. (9.23)

Equation (9.23) gives the Wronskian of any pair of solutions of

Eq. (9.21). For the particular solutions given in this example we

must choose c = −3/2, so as to make (9.22) and (9.23) equal.

Exercises

In each of Exercises 1-6, determine the longest interval in which

the given initial value problem is certain to have a unique twice

differentiable solution. Do not attempt to find the solution.

1. ty′′ + 3y = t, y(2) = 1, y′(2) = 3

2. (t− 1)y′′ − 3ty′ + 4y = sin t, y(−2) = 2, y′(−2) = 1

3. t(t− 4)y′′ + 3ty′ + 5y = 2, y(3) = 0, y′(3) = −1

4. y′′ + (cos t)y′ + 3(ln |t|)y = 0, y(3) = 2, y′(3) = 1

5. (x− 3)y′′ + xy′ + (ln |x|)y = 0, y(1) = 0, y′(1) = 1

6. (x− 2)y′′ + y′ + (x− 2)(tanx)y = 0, y(3) = 1, y′(3) = 2
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In each of Exercises 7-8, find the fundamental set of solutions

specified by the Theorem 5 for the given differential equation

and initial point.

7. y′′ + y′ − 2y = 0, t0 = 0

8. y′′+5y′+4y = 0, t0 = 1 In each of Exercises 9-12, verify that

the functions y1 and y2 are solutions of the given differential

equation. Do they constitute a fundamental set of solutions?

9. y′′ + 4y = 0; y1(t) = cos 2t, y2(t) = sin 2t

10. y′′ − 2y′ + y = 0; y1(t) = et, y2(t) = tet

11. x2y′′−x(x+2)y′+(x+2)y = 0, x > 0; y1(x) = x, y2(x) =

xex

12. (1 − x cotx)y′′ − xy′ + y = 0, 0 < x < π; y1(x) =

x, y2(x) = sinx

Answers

1. 0 < t <∞

2. −∞ < t < 1

3. 0 < t < 4

4. 0 < t <∞

5. 0 < x < 3

6. 2 < x < 3π/2

7. y1(t) = 1
3e

−2t + 2
3e

t, y2(t) = −1
3e

−2t + 1
3e

t

8. y1(t) = −1
3e

−4(t−1) + 4
3e

−(t−1), y2(t) = −1
3e

−4(t−1) + 1
3e

−(t−1)
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9. Yes

10. Yes

11. Yes

12. Yes



Chapter 10

Homogeneous Second Order

Equations with Constant

Coefficients

In this chapter we show how to solve the homogeneous linear equa-

tion of the form

ay′′ + by′ + cy = 0, (10.1)

where a and b are constants.

176
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10.1 Second Order Equations with Constant

Coefficients

A differential equation of the form (10.1) is a homogeneous second

order linear differential equation with constant coefficients. (We

assume that a, b and c are real and the range of t considered is the

entire t-axis.)

We know that the solution of the first order homogeneous lin-

ear differential equation with constant coefficients y′ + ky = 0 is

an exponential function, namely y = ce−kt.

We thus infer that

y = eλt (10.2)

might be a solution of the differential equation (10.1) if λ is

properly chosen. Substituting the function (10.2) and its deriva-

tives y′ = λeλt and y′′ = λ2eλt into the equation (10.1), we obtain

(aλ2 + bλ+ c)eλt = 0.

Hence the function (10.2) is a solution of the differential equation

(10.1), if λ is a solution of the quadratic equation

aλ2 + bλ+ c = 0 (10.3)

The equation (10.3) is called the characteristic equation (or

auxiliary equation) of (10.1).

Since a, b and c are real, from elementary algebra we know
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that, the characteristic equation may have

1. two distinct real roots if the discriminant b2 − 4ac > 0.

2. two complex conjugate roots, if the discriminant b2−4ac < 0.

3. a real double root. if the discriminant b2 − 4ac = 0.

We consider these cases in detail.

10.1.1 Case 1 Two distinct real roots λ1 and λ2

In this case

y1 = eλ1t, y2 = eλ2t

are solutions of the differential equation (10.1). The Wronskian

of y1 and y2 is found out to be (λ2 − λ) exp(λ1 + λ2)t. When λ1

and λ2 are distinct, then wronskian is never 0 on any interval, so

that y1 and y2 form a basis (fundamental system of solutions) on

any interval. Hence the general solution is given by

y = c1e
λ1t + c2e

λ2t (10.4)

10.1.2 Case 2 Double Root

This case arises if and only if the discriminant of the characteristic

equation (10.3) is zero, i.e. if b2 − 4ac = 0. Then

λ1 = λ2 = −b/2a
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The double root is λ = −b/2a, and we have at first only one

solution y1 = eλt (whereλ = −b/2a). To find another solution y2,

we may apply the method of variation of parameters.

The idea of method of variation of parameters is to start with

y(t) = v(t)y1(t) where y1 = e
−b
2a t

and to determine v(t), so that y2(t) is a solution of (10.1).

We substitute y(t) and its derivatives into (10.1) and collect

terms, obtaining

v′′y1 = 0.

As y1 is nonzero, this implies that v′′ = 0. By two integrations,

v = c1t+ c2. Hence

y(t) = uy1 = (c1t+ c2)eλt = c1te
λt + c2e

λt.

The second term on the right side of the above equation corre-

sponds to the original solution y1(t) = eλt , but the first term

arises from a second solution, namely,y2(t) = teλt. It can be veri-

fied that the Wronskian of y1 and y2 is never 0, so that

y1(t) = eλt, y2(t) = teλt

form a fundamental set of solutions.

The corresponding general solution is

y(t) = (c1 + c2t)eλt,

(
λ = − b

2a

)
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Attention: If λ is a simple root of (10.3), then the above is not

a solution of (10.1).

10.1.3 Case 3 Complex Roots

When the discriminantb2− 4ac < 0, we obtain complex roots that

occur in conjugate pairs, say λ1 = p + i q, λ2 = p − i q . Hence

we first obtain the basis

y1 = e(p+i q)t, y2 = e(p−i q)t

consisting of two complex functions. Practically one is interested

in the real solutions obtainable from these complex solutions.

Now taking θ = qt in the Euler formulae

ei θ = cos θ + i sin θ

and e−i θ = cos θ − i sin θ,

we obtain

y1 = e(p+i q)t = epteiqt = ept(cos qt+ i sin qt)

and

y2 = e(p−i q)t = epte−iqt = ept(cos qt− i sin qt).

Adding and subtracting the above two expressions for y1 and y2,
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we obtain

y1 + y2

2
= ept cos qt, y1−y2

2 = ept sin qt .

The two functions on the right are real valued. Also, being

the linear combinations of the solutions y1 andy2, both ept cos qt

and ept sin qt are solutions of the differential equation (10.1). Since

their quotient cos qt/ sin qt is not constant on any interval, they are

linearly independent on any interval and hence form a fundamental

set of solutions. Hence in the case of complex roots a basis on any

interval is

ept cos qt, ept sin qt

and the corresponding general solution is

y(t) = ept(A cos qt+B sin qt), (10.5)

where A and B are arbitrary constants.

Working Rule: Determination of General Solution

To find the general solution of the differential equation

ay′′ + by′ + cy = 0 (10.6)

we first write the characteristic equation

aλ2 + bλ+ c = 0 (10.7)

and then the general solution of (10.6) is given by the following
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table:
Case Roots of

the char-

acteristic

equation

aλ2 + bλ +

c = 0

Basis of

ay′′ +

by′ +

cy = 0

General solution of

ay′′ + by′ + cy = 0

1 Distinct

real roots

λ1, λ2

eλ1t, eλ2t y(t) = c1e
λ1t + c2e

λ2t

2 Real double

root

λ = − b
2a

eλt, t eλt y(t) = (c1 + c2t)eλ t

3 Complex

conjugate

roots

λ1 =

p+ iq, and

λ2 = p− iq

ept cos qt

ept sin qt

y(t) =

ept (A cos qt+B sin qt)

Example 1 (Distinct real roots) Solve y′′ + y′ − 2y = 0.

Solution

The characteristic equation is λ2+λ−2 = 0, that has the roots

λ1 = 1 and λ2 = −2. The basis in this case is et and e−2t. Hence

general solution is given by

y = y(t) = c1e
t + c2e

−2t.
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Example 2 (Distinct real roots)

Find the solution of the initial value problem

y′′ − y′ − 2y = 0, y(0) = 0, y′(0) = 1.

Solution

The characteristic equation is

λ2 − λ− 2 = 0.

The roots are λ = −1 and λ = 2. Hence a basis is

e−t and e2t

and the general solution is

y = c1e
−t + c2e

2t.

Noting that

y′ = −c1e−t + 2c2e2t

and using the initial conditions, we have

c1 + c2 = 0 and −c1 + 2c2 = 1.

Solving for c1 and c2, we obtain

c1 = −1
3
, c2 =

1
3
.

Hence solution to the IVP is

y = −1
3
e−t +

1
3
e2t.



184 CHAPTER 10. WITH CONSTANT COEFFICIENTS

Example 3 (Double root) Solve y′′ + 8y′ + 16y = 0.

Solution

The characteristic equation is λ2 +8λ+16 = 0, and the double

root λ = −4. The basis in this case is e−4t and te−4t. Hence,

general solution is given by

y = y(t) = (c1 + c2t)e−4t.

Example 4 (Double root) Find the solution of the initial value

problem

y′′ − 2y′ + y = 0, y(0) = 1, y′(0) = 2

Solution

The characteristic equation is λ2 − 2λ + 1 = 0 has the real

double root λ = 1. The basis in this case is

y1 = et and y2 = tet.

and general solution is y = (c1 + c2t)et. Noting that

y′ = (c1 + c2t)et + c2e
t,

the initial conditions give c1 = 1, c2 = 1.

Hence solution is

y = (1 + t)et.

Example 5 (Complex conjugate roots) Find a general solution of

the equation y′′ + 10y′ + 29y = 0.

Solution
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The characteristic equation is λ2 + 10λ + 29 = 0, that has

complex conjugate roots λ1 = p+ i q = −5+ i 2 and λ2 = p− i q =

−5−i 2. Here p = −5 and q = 2. The basis in this case is e−5t cos 2t

and e−5t sin 2t. Hence general solution is given by

y = y(t) = e−5t(A cos 2t+B sin 2t),

where A and B are arbitrary constants.

Example 6 (Complex conjugate roots) Find the solution of the

initial value problem

y′′ + ω2, y = 0y(0) = 1, y′(0) = ω,

where ω is a nonzero constant.

Solution

The characteristic equation is λ2 + ω2 = 0,and has complex

conjugate roots λ1 = p + i q = i ω and λ1 = p − i q = −i ω. Here

p = 0 and q = ω. The basis in this case is cosωt and sinωt. Hence

by (10.5), general solution is given by

y = y(t) = A cosωt+B sinωt,

where A and B are arbitrary constants. Noting that

y′ = −Aω sin ωt+Bω cos ωt,

the initial conditions give A = 1 and B = 1.
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Hence solution is

y = cos ωt+ sinωt.

10.1.4 Exercises

In Exercises 1-10, solve the following differential equations.

1. y′′ − 9y = 0

2. y′′ + 9y = 0

3. y′′ − 8y′ + 16y = 0

4. y′′ + 6y′ + 9y = 0

5. y′′ + y′ + 0.25y = 0

6. y′′ + 2y′ = 0

7. 8y′′ − 2y′ − y = 0

8. y′′ + 2ky′ + k2y = 0

9. 2y′′ + 10y′ + 25y = 0

10. y′′ + 2y′ + (ω2 + 1)y = 0

11. Applying the method of variation of parameters solve y′′ +

6y′ + 9y = 0, using y1 = e2t as one of the solution. (Hint:

Follow the method described in the Case 3 for double root)

12. Verify directly that in the case of a double root, teλt with

λ = −a
2 is a solution of y′′ + ay′ + by = 0.

13. Verify that if y′′ + ay′ + by = 0 does not have a double root,

then teλt is not a solution of it.

14. Assuming that y = y(t) = ept(A cos qt+B sin qt) is a solution

of y′′ + ay′ + by = 0, express a and b in terms of p and q.
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In Exercises 15-18, find a differential equation of the form

y′′ + ay′ + by = 0 for which the given functions constitute a

basis of solution.

15. e−αt, te−αt

16. e−t cos
√

5t, e−t sin
√

5t

17. cosh 6t, sinh 6t

18. e−t/2 cos 2t, e−t/2 sin 2t

19. In each of the following, find a differential equation of the

form y′′ + ay′ + by = 0 for which the given y is a general

solution. Also determine the constants so that the given

initial conditions are satisfied.

In Exercises 20- 25, solve the initial value problems.

20. y′′ − 16y = 0; y(0) = 1, y′(0) = 20

21. y′′ + 3y = 0; y(0) = 2, y′(0) = 3
√

3

22. y′′ − 4y′ + 4y = 0; y(0) = 0, y′(0) = −3

23. y′′ + 4y′ + (4 + ω2)y = 0; y(0) = 1, y′(0) = ω − 2

24. y′′ + 6y′ + 9y = 0; y(0) = −4, y′(0) = 14

25. y′′ + 2αy′ + (α2 + π2)y = 0; y(0) = 3, y′(0) = −3α

Answers

1. y = c1e
3t + c2e

−3t

2. y = A cos 3t+B sin 3t

3. y = (c1 + c2t)e4t

4. y = (c1 + c2t)e−3t
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5. y = (c1 + c2t)e−t/2

6. y = c1 + c2e
−2t

7. y = c1e
t/2 + c2e

−t/4

8. y = (c1 + c2t)e−kt

9. y = e−5t/2(A cos 5
2 t+B sin 5

2 t)

10. y = e−t(A cosωt+B sinωt)

20. y = 3e4t − 2e−4t

22. y = −3te2t

23. y = e−2t (cosωt+ sinωt)

24. y = (2t− 4)e−3t

25. y = 3e−at cosπt



Chapter 11
Solution by Reducing to First

Order When One Solution is

Known

Suppose that we know one solutiony1(t), not everywhere zero, of

y′′ + p(t)y′ + q(t)y = 0 (11.1)

To find a second solution, let

y = v(t)y1(t); (11.2)

then

y′ = v′(t)y1(t) + v(t)y1
′
(t)

189
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and

y′′ = v′′(t)y1(t) + 2v′(t)y1
′
(t) + v(t)y′′1(t).

Substituting for y, y′, and y′′in Eq.(11.1), and collecting terms, we

find that

y1v
′′ + (2y′1 + py1)v′ + (y′′1 + py′1 + qy1)v = 0 (11.3)

Since y1 is a solution of Eq.(11.1), the coefficient of v in Eq.(11.3)

is zero, so that Eq.(11.3) becomes

y1v
′′ + (2y1

′
+ py1)v′ = 0. (11.4)

Despite its appearance, Eq.(11.4) is actually a first order equation

for the function v′ and can be solved either as a first order lin-

ear equation or as a separable equation. Once v′ has been found,

then v is obtained by integration. Finally, y is determined from

Eq.(11.2). This procedure is called the method of reduction of or-

der, because the crucial step is the solution of a first order differen-

tial equation for v′ rather than the original second order equation

for y. Although it is possible to write down a formula for v(t), we

will instead illustrate how this method works by an example.

Example 1 Given that y1(t) = t−1 is a solution of

2t2y′′ + 3ty′ − y = 0, t > 0 (11.5)

by reducing to first order, find a fundamental set of solutions.
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Solution

We sety = v(t)t−1; then

y′ = v′t−1 − vt−2, y′′ = v′′t−1 − 2v′t−2 + 2vt−3.

Substituting for y, y′, and y′′ in Eq.(11.5) and collecting terms, we

obtain

2t2(v′′t−1 − vt−2 + 2vt−2 + 2vt−3) + 3t(v′t−1 − vt−2)− vt−1

= 2tv′′ + (−4 + 3)v′t−2 + 2vt−3) + 3t(v′t−1 − vt−2)− vt−1

= 2tv′′ − v′ = 0 (11.6)

Note that the coefficient of v is zero, as it should be; this provides

a useful check on our algebra.

Separating the variables in Eq.(11.6) and solving for v′(t), we

find that

v′(t) = ct1/2

then

v(t) =
2
3
ct3/2 + k.

It follows that

y =
2
3
ct1/2 + kt−1 (11.7)

where c and k are arbitrary constants. The second term on the

right side of Eq. (11.7) is a multiple of y1(t)and can be dropped,
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but the first term provides a new solutiony2(t) = t1/2.

It can be seen that Wronskian of y1 and y2 is

W (y1, y2)(t) =
3
2
t−3/2, t > 0 (11.8)

Consequently, y1 and y2 form a fundamental set of solutions of the

equation.

Example 2 Find a basis of solutions for the following second-order

homogeneous linear equation for positive t :

t2y′′ − ty′ + y = 0. (11.9)

Solution

By inspection a solution isy1 = t, because y′1 = 1,and y′′1 = 0,

substitution gives −t · 1 + t = 0.

We sety = v(t)t; then

y′ = v′(t)t+ v(t);

y′′ = v′′(t)t+ 2v′(t)

Substituting for y, y′ and y′′ in Eq. (11.9) and collecting terms,

we obtain

t2[v′′(t) + 2v′(t)]− t[v′(t)t+ v(t)] + v(t)t = 0

i.e.,

t3v′′(t) + t2v′(t) = 0
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i.e.,

t
d

dt
(v′(t)) = −v′(t)

i.e.,
d
dt(v

′(t))
v′(t)

= −1
t
.

Integrating,

ln v′(t) = − ln t+ ln c

where c is a arbitrary constant.

i.e.,

ln v′(t) = ln ct−1

i.e.,

v′(t) =
c

t

Integrating,

v(t) = c ln t+ k,

where k is also an arbitrary constant.

Hence

y = ct ln t+ kt. (11.10)

The second term on the right of (11.10) is a multiple of y1(t)

and can be dropped, but the first term provides a new solution

y2(t) = t ln t. It can be verified that the Wronskian of y1 and

y2 is not equal to 0 for t > 0. Consequently y1 and y2 form a

fundamental set of solution of Eq. (11.9).



194 CHAPTER 11. REDUCING TO FIRST ORDER

11.0.5 Exercises

In Exercises 1 to 6, reduce to the first order and find a second

solution of the given order differential equation (one solution is

given)

1. ty′′ + 2y′ + ty = 0, y1 = sin t
t

2. t2y′′ − 5ty′ + 9y = 0, y1 = t3

3. t2y′′ + ty′ +
(
t2 − 1

4

)
y = 0, y1 = t−1/2 cos t

4. (1− t2)y′′ − 2ty′ + 2y = 0, y1 = t

5. t2y′′ + 2ty′ − 2y = 0, t > 0; y1(t) = t

6. t2y′′ − 4ty′ + 6y = 0, t > 0; y1(t) = t2

Answers

2. y2 = t31n |t|

3. y2 = t−1/2 sin t

5. y2 = t−2

6. y2 = t3



Chapter 12
Euler-Cauchy Equation

Cauchy equation or Euler equation is a differential equation

of the form

t2y′′ + aty′ + by = 0 (12.1)

where a and b are constants.

(12.1) can be solved by algebraic manipulations. By substitut-

ing,

y = tm (12.2)

and its derivatives into the differential equation (12.1), we find

t2m(m− 1)tm−2 + atmtm−1 + btm = 0.

By omitting tm, which is not zero when t 6= 0, we obtain the

195
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auxiliary equation

m2 + (a− 1)m+ b = 0. (12.3)

Case 1: Distinct Real Roots

If the roots m1 and m2 of the equation (12.3) are different, then

the two functions

y1(t) = tm1 and y2(t) = tm2

constitute a basis of solutions of the differential equation (12.1)

for all t for which these functions are defined. The corresponding

general solution is

y = y(t) = c1t
m1 + c2 t

m2 , (12.4)

where c1 , c2 are arbitrary constants.

Example 1 (Different roots) Solve t2y′′ + ty′ − y = 0.

Solution

Here a = 1, b = −1 and hence the auxiliary equation (12.3)

becomes

m2 − 1 = 0

having roots m1=1 and m2= −1.

Hence a basis of real solutions for all t 6= 0 is y1 = t and y2

= t1 and the corresponding general solution for all t 6= 0 is y= c1

t+ c2 t1.
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Example 2 Solve x2y′′ − 2.5xy′ − 2y = 0.

Solution

[Here independent variable is x instead of t. Hence general

solution will have the form y = y(x) = c1x
m1 + c2x

m2 .]

Here a = 2.5, b = 2 and hence the auxiliary equation (12.3)

becomes

m2 − 3.5m− 2 = 0

having roots m1 = 4and m2 = −1
2 .

Hence a basis of real solutions for all x 6= 0 is y1 = x4 and y1 = 1√
x
.

Hence the general solution for all x 6= 0 is

y1 = c1x
4 + c2

1√
x
.

Case 2 : Double Real Root

The auxiliary equation (12.3) has a double root m1 = m2 if and

only if b = 1
4(1−a)2, and then m1 = m2 = 1−a

2 . In this critical case

we use the method of variation of parameters to find the second

solution and obtain

y2 = uy1 = (ln t)y1.

Thus writing m in place of m1, we get

y1 = tm and y2 = tm ln t, (12.5)

(where m = 1−a
2 ) as the solutions of (12.1) in the case of a double
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root m of (12.3). It can be seen that these solutions are linearly

independent, and hence they constitute a basis of real solutions of

(12.1) for all positive t, and the corresponding general solution of

(12.1) is

y = (c1 + c2 ln t)tm, (12.6)

where c1, c2 are arbitrary.

Example 3 (Double root) Solve x2y′′ − 3xy′ + 4y = 0.

Solution

Here a = −3, b = 4 and hence the auxiliary equation (12.3)

becomes

m2 − 4m+ 4 = 0

which has the double root m = 2.

Hence a basis of real solutions for all positive x is x2 and x2 lnx,

and the corresponding general solution is

y = (c1 + c2 lnx)x2

Case 3: Complex Conjugate Roots

If the roots of (12.3) are complex, then they occur in conjugate

pair, say

m1 = µ+ i ν and m2 = µ− i ν.

Since eln t = t, we note that ti ν can be written as follows:

ti ν =
(
eln t
)i ν

= ei ν ln t



199

= cos(v ln t) + i sin(v ln t), Using the Euler formula

eiθ = cos θ + i sin θ

Hence

tm1 = tµti ν = tµ[cos(v ln t) + i sin(v ln t)]tm2

= tµt−i ν = tµe−i ν ln t = tµ[cos(v ln t)− i sin(v ln t)].

Hence

tm1+tm2

2 = tµ cos(v ln t) and tm1−tm2

2i = tµ sin(v ln t)

and are the real solutions of (12.3) and hence the corresponding

general solution for all positive t,

y = tµ [A cos(v ln t) +B sin(v ln t)] (12.7)

Example 4 Solve t2y′′ + 7ty′ + 13y = 0.

Solution

Here a = 7, b = 13, and hence the auxiliary equation (??)

becomes

m2 + 6m+ 13 = 0

and gives

m = −3± 2 i.... µ = −3, v = 2.

Hence by (12.7), the general solution of the given equation is

y = t−3 [A cos(2 ln t) +B sin(2 ln t)] .
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Example 5 (General Solution in the case of a Double Root)

The Euler-Cauchy equation

x2yn + 0.6xy′ + 16.04y = 0

has the auxiliary equation m2 − 0.4m + 16.04 = 0. The roots

are complex conjugate, m1 = 0.2 + 4i and m2 = 0.2 − 4i, where

i =
√
−1. (We know from algebra that if a polynomial with real

coefficients has complex roots, these are always conjugate.) Now

use the trick of writing x = eln x and obtain

xm1 = x0.2+4i = x0.2(eln x)4i = x0.2e(4 ln x)t,

xm2 = x0.2−4i = x0.2(eln x)−4i = x0.2e−(4 ln x)t.

Next apply Euler’s formula with i = 4 lnx to these two formulas.

This gives

xm1 = x0.2[cos (4 lnx) + i sin (4 lnx)],

xm2 = x0.2[cos (4 lnx)− i sin (4 lnx)].

Add these two formulas, so that the sine drops out, and divide the

result by 2. Then subtract the second formula from the first, so

that the cosine drops out, and divide the result by 2i. This yields

x0.2 cos (4 lnx) and x0.2 sin (4 lnx)

respectively. By the superposition principle these are solutions of

the Euler-Cauchy equation. Since their quotient cot(4 lnx) is not
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constant, they are linearly independent. Hence they form a basis

of solutions, and the corresponding real general solution for all

positive x is

y = x0.2[A cos (4 ln x) +B sin (4 lnx)].

Example 6 Find the electrostatic potential v = v(r) between

two concentric spheres of radii r1 = 5 cmand r2 = 10 cm kept at

potentials v1 = 110V and v2 = 0, respectively.

Solution

Physical Information. v(r) is a solution of the Euler-Cauchy

equation rv′′ + 2v′ = 0, where v′ = dv/dr.

The auxiliary equation is m2 +m = 0. It has the roots 0 and

−1. This gives the general solution

v(r) = c1 + c2/r.

From the “boundary condition” (the potentials on the spheres) we

obtain

v(5) = c1 +
c2
5

= 110, v(10) = c1 +
c2
10

= 0.

By subtraction, c2
10 = 110, c2 = 1100. From the second equation,

c1 = − c2
10 = −110. Hence

v(r) = −110 + 1100/r V.



Chapter 13
Nonhomogeneous Equation

Solution of Nonhomogeneous Differential Equations

Consider the non homogeneous linear equation

L[y] = y′′ + p(t)y′ + q(t)y = g(t) (13.1)

where p, q, and g are given (continuous) functions on the open

interval I. The equation

L[y] = y′′ + p(t)y′ + q(t)y = 0, (13.2)

in which g(t) = 0 and p and q are the same as in Eq.(13.1), is

called the homogeneous equation corresponding to Eq.(13.1).

The following two results describe the structure of solutions of

the nonhomogeneous equation (13.1) and provide a basis for con-

structing its general solution.

202
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Theorem 1 If Y1 and Y2 are two solutions of the non homogeneous

equation (13.1), then their difference Y1 − Y2 is a solution of the

corresponding homogeneous equation (13.2).

If, in addition, y1 and y2 are a fundamental set of solutions of

Eq. (13.2), then

Y1(t)− Y2(t) = c1y1(t) + c2y2(t), (13.3)

where c1 and c2 are certain constants.

Theorem 2 The general solution of the non homogeneous equa-

tion (13.1) can be written in the form

y = φ(t) = c1y1(t) + c2y2(t) + yp(t),

where y1 and y2 are a fundamental set of solutions of the corre-

sponding homogeneous equation (13.2), c1 and c2 are arbitrary

constants, and yp is some particular solution of the non homoge-

neous equation (13.1). That is, the general solution to (13.1)

has the form

y = yh + yp (13.4)

where yh, called complementary function, is the general

solution of the corresponding homogeneous equation (13.2) and yp

is the particular solution of equation (13.1) which contains no

arbitrary constant.

We are already familiar with methods of finding yh (i.e., gen-

eral solution of homogeneous equations). For determining the par-
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ticular solution yp various methods exist. In the coming chapters

we discuss three methods: (a) method of undetermined coeffi-

cients, (b) method of variation of parameters (c), and series solu-

tion.



Chapter 14
Method of Undetermined

Coefficients

14.1 Method of Undetermined Coefficients

Method of undetermined coefficients is a simpler method

for determining the particular solution yp of second order non-

homogeneous differential equations of the form

ay′′ + by′ + cy = g(t) (14.1)

with constant coefficients. The disadvantage of this method is that

it is applicable only to those nonhomogeneous linear differential

equations whose right hand side g(t) is a single power of t, a poly-

nomial, an exponential function, a sine or cosine or a sum or a

205
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product of such functions.

The Method of undetermined coefficients is based upon sub-

stituting the general form of the particular integral yp into the

differential equation (14.1) and then determining the specific form

by forcing the assumed particular integral to be a solution.

Working Rule for the Determination of General Solution

of Non-Homogeneous Equation

To determine the general solution of

ay′′ + by′ + cy = g(t) (14.1)

we proceed as follows:

Step1: Find the solution yh of the corresponding homogeneous

equation

ay′′ + by′ + cy = 0 (14.2)

Step 2: Find the particular solution yp of the non- homogeneous

equation using Rule 1 or Rule 2 (discussed below.)

Step 3: Then general solution of (14.1) is y = yh + yp.

RULE 1 (Basic Rule)

If g(t) in

ay′′ + by′ + cy = r(t)

is one of the functions in column 1 of the Table below, choose the

corresponding function yp in column 2 and determine its undeter-

mined coefficients by substituting yp into (14.1).

Table (Method of undetermined coefficients RULE 1)
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In the following table we assume that

Pn(t) = ant
n + an−1t

n−1 + · · · + a1t+ a0.

Column 1 Column 2

Term in g(t) Choice for yp

kept Cept

Pn(t) (n = 0, 1, . . .) Knt
n +Kn−1t

n−1 + · · · + K1t+K0

k cos qt K cos qt+M sin qt

k sin qt K cos qt+M sin qt

k ept cos qt ept (K cos qt+M sin qt)

k ept sin qt ept (K cos qt+M sin qt)

Pn(t)ept
(
Knt

n +Kn−1t
n−1 + · · · + K1t+K0

)
ept

Pn(t)ept cos qt (Knt
n +Kn−1t

n−1 + · · · +K0)ept cos qt

+(Lnt
n + Ln−1t

n−1 + · · · + L0)ept sin qt

Pn(t)ept sin qt (Knt
n +Kn−1t

n−1 + · · · +K0)ept cos qt

+(Lnt
n + Ln−1t

n−1 + · · · + L0)ept sin qt

Example 1 (Using Rule 1) Solve the nonhomogeneous equation

y′′ − 4y′ + 3y = 10e−2t. (14.3)

Solution

Step 1: It can be found out that the general solution to the

corresponding homogeneous equation

y′′ − 4y′ + 3y = 0
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is

yh = c1e
t + c2e

3t.

Step 2: Determination of yp :

Here g(t) is 10e−2t, hence by Rule 1, the choice for yp is Ce−2t.

Substituting this into the given nonhomogeneous equation we get

y′′p − 4y′p + 3yp = 10e−2t

i.e.,

4Ce−2t − 4(−2Ce−2t) + 3Ce−2t = 10e−2t.

Hence

4C + 8C + 3C = 10

so that C = 2
3 .

Therefore yp = 2
3e

−2t.

Step 3: The general solution to the nonhomogeneous equation is

y = yh + yp = c1e
t + c2e

3t +
2
3
e−2t.

Example 2 (Using Rule 1) Solve the nonhomogeneous equation

y′′ + 4y = 8 t2.

Solution

Step 1: It can be found out that the general solution to the
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corresponding homogeneous equation y′′ + 4y = 0 is

yh = A cos 2t+B sin 2t.

Step 2: Determination of yp :

Here g(t) is 8t2, hence by Rule 1, the choice for yp is

yp = K2t
2 +K1t+K0.

Substituting this into the given nonhomogeneous equation,t

y′′p + 4yp = 8 t2.

i.e. 2K2 + 4(K2x
2 +K1x+K0) = 8 t2.

Equating the coefficients of like powers of t, we get

4K2 = 8, 4K1 = 0, 2K2 + 4K0 = 0,

which gives

K2 = 2, K1 = 0, K2 = −1.

Hence

yp = 2t2 − 1.

Step 3: The general solution to the nonhomogeneous equation is

y = yh + yp = A cos 2t+B sin 2t+ 2t2 − 1.
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Example 3 (Using Rule 1) Solve the nonhomogeneous equation

y′′ − y′ − 2y = 10 cos t.

Solution

Step 1: It can be found out that the general solution to the

corresponding homogeneous equation y′′ − y′ − 2y = 0 is

yh = c1e
−t + c2e

2t.

Step 2: Determination of yp :

Here g(x)is 10 cosx, hence by Rule 1, the choice for yp is

yp = K cos t+M sin t.

Substituting this into the given nonhomogeneous equation,

y′′p − y′p − 2yp = 10 cos t.

i.e., (−3K − M ) cos x + (K − 3M ) sin x = 10 cos x.

By equating the coefficients of cos x and sin x on both sides,

−3K − M = 10 and K − 3M = 0,

which gives K = −3 and M = −1, so that

yp = −3 cos t− sin t.
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Step 3: The general solution to the nonhomogeneous equation is

y = yh + yp = c1e
−t + c2e

2t − 3 cos t− sin t.

Example 4 Find a particular solution of

y′′ − 3y′ − 4y = 3e2t. (14.4)

Solution

The choice for yp is

yp(t) = C e2t,

where C is a constant to be determined. Hence

y′p(t) = 2C e2t, y′′p(t) = 4C e2t,

and substituting for y, y′, and y′′ in Eq.(14.4), we obtain

(4C − 6C − 4C)e2t = 3e2t.

Hence, −6Ce2t must equal to 3e2t, so C = −1
2 . Thus a particular

solution is

yp(t) = −1
2
e2t.

Example 5 Find a particular solution of

y′′ − 3y′ − 4y = 2 sin t (14.5)
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Solution

The choice for yp is

yp(t) = A sin t+B cos t,

where A and B are to be determined. Then

y′p(t) = A cos t+B sin t, y′′p(t) = −A sin t−B cos t, .

By substituting these expressions for y, y′, and y′′ in Eq. (14.5)

and collecting terms, we obtain

(−A+ 3B − 4A) sin t+ (−B − 3A− 4B) cos t = 2 sin t. (14.6)

To satisfy Eq.(14.6), we must match the coefficients of sin t and

cos t on each side of the equation; thus A and B must satisfy the

equations

−5A+ 3B = 2,−3A− 5B = 0.

Hence A = −5/17 and B = 3/17, so a particular solution of

Eq.(14.5) is

yp(t) = − 5
17

sin t+
3
17

cos t.

Example 6 Find a particular solution of

y′′ − 3y′ − 4y = −8et cos 2t (14.7)

Solution
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The choice for yp is

yp(t) = Aet cos 2t+Bet sin 2t.

It follows that

y′p(t) = (A+ 2B)et cos 2t+ (−2A+B)et sin 2t

and

y′′p(t) = (−3A+ 4B)et cos 2t+ (−4A− 3B)et sin 2t

By substituting these expressions in Eq.(14.7), we find that A and

B must satisfy

10A+ 2B = 8, 2A− 10B = 0

Hence A = 10/13 andB = 2/13; therefore a particular solution of

Eq.(14.7) is

yp(t) =
10
13
et cos 2t+

2
13
et sin 2t..

RULE 1B (Sum Rule)

If g(t) in

ay′′ + by′ + cy = g(t) (14.8)

is a sum of functions in several lines of column 1 of the Table given

above, choose for yp the sum of functions in the corresponding

lines in column 2 and determine its undetermined coefficients by
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substituting yp into (14.8). The following theorem is helpful in

this regard.

Theorem (Principle of Superposition) If y1(t) is a particular

solution of

y′′ + ay′ + by = g1(t)

and y2(t) is a particular solution of

y′′ + ay′ + by = g2(t),

then

y(t) = y1(t) + y2(t)

is a solution of

y′′ + ay′ + by = g1(t) + g2(t)..

Example 7 (Using Rule 1B/Principle of Superposition) Find a

particular solution of

y′′ − 3y′ − 4y = 3e2t + 2 sin t− 8et cos 2t (14.9)

Solution

By splitting up the right side of Eq.(14.9), we obtain the three

differential equations

y′′ − 3y′ − 4y = 3e2t,
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y′′ − 3y′ − 4y = 2 sin t,

and

y′′ − 3y′ − 4y = −8et cos 2t.

Solutions of these three equations have been found in Examples

4,5, and 6 respectively.

Therefore a particular solution of Eq. (14.9) is their sum, and is

yp(t) = −1
2
e2t +

3
17

cos t− 5
17

sin t+
10
13
et cos 2t+

2
13
et sin 2t.

Example 8 (Using Rule 1B) Solve the nonhomogeneous equation

y′′ − 3y′ + 2y = 4t+ e3t.

Solution

Step 1: It can be found out that the general solution to the

corresponding homogeneous equation y′′ − 3y′ + 2y = 0 is

yh = c1e
t + c2e

2t.

Step 2: Determination of yp : Here g(t) is 4t + e3t, hence by

Rule 1B, the choice for yp is

yp = K1t+K0 + Ce3t.

Substituting this into the given nonhomogeneous equation and
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solving, we get

K1 = 2, K0 = 3, C =
1
2

so that yp = 2t+ 3 + 1
2e

3t.

Step 3: The general solution to the nonhomogeneous equation is

y = yh + yp = c1e
t + c2e

2t + 2t+ 3 +
1
2
e3t.

Example 9 (Using Rule 1B) Solve the nonhomogeneous equation

(D2 − 2D + 3)y = t3 + sin t,

where D is the differential operator given by D ≡ d
dt .

Solution

Step 1: It can be found out that the general solution to the

corresponding homogeneous equation (D2 − 2D + 3)y = 0 is

yh = et(A cos
√

2t+B sin
√

2t).

Step 2: Determination of yp : Here g(t) is t3 + sin t, hence the

choice for yp is

yp = K3t
3 +K2t

2 +K1t+K0 +K cos t+M sin t.

Substituting this into the given nonhomogeneous equation and
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solving,

K3 =
9
27
, K2 =

18
27
, K1 =

6
27
, K0 = − 8

27
, K =

1
4
, M =

1
4
,

so that

yp =
1
27

(9t3 + 18t2 + 6t− 8) +
1
4
(cos t+ sin t).

Step 3: The general solution to the nonhomogeneous equation is

y = yh + yp = et(A cos
√

2t+B sin
√

2t)

+
1
27

(9t3 + 18t2 + 6t− 8) +
1
4
(cos t+ sin t).

Example 10 Solve the nonhomogeneous equation

y′′ − 4y′ + 3y = sin 3x cos 2x.

Solution

We note that the given differential equation can be written as

y′′ − 4y′ + 3y =
1
2

(sin 5x+ sinx) .

Step 1: The general solution to the corresponding homogeneous

equation y′′ − 4y′ + 3y = 0 is

yh = c1e
3x + c2e

x.
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Step 2: Determination of yp :

Here r(x) = 1
2 (sin 5x+ sinx) . Hence the choice for yp is

yp = K1 cos 5x+M1 sin 5x+K2 cosx+M2 sinx

Substituting this into the given nonhomogeneous equation and

solving, we get

K1 =
10
884

, M1 = − 11
884

, K2 =
1
10
, M2 =

1
20
.

Hence

yp =
10
884

cos 5x− 11
884

sin 5x+
1
10

cosx+
1
20

sinx.

Step 3: The general solution to the nonhomogeneous equation is

c1e
x + c2e

3x +
10
884

cos 5x− 11
884

sin 5x+
1
10

cosx+
1
20

sinx

*Attention: If a term in g(t) is a solution of the homogeneous

equation corresponding to

ay′′ + by′ + cy = g(t),

we have to modify the choice of yp . We first consider an example.

Example 11 Find a particular solution of

y′′ − 3y′ − 4y = 2e−t (14.10)
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Solution

We assume that choice for particular solution is yp(t) = Ae−t.

By substituting in Eq.(14.10), we obtain

(A+ 3A− 4A)e−t = 2e−t (14.11)

i.e.,

0 = 2e−t (14.12)

Since the left side of Eq.(14.12) is zero, there is no choice of A that

satisfies this equation. Therefore, there is no particular solution of

Eq.(14.10) of the assumed form. The reason for this possibly unex-

pected result becomes clear if we solve the homogeneous equation

y′′ − 3y′ − 4y = 0 (14.13)

that corresponds to Eq.(14.10). A fundamental set of solutions

of Eq.(14.13) is y1(t) = e−t and y2(t) = e4t. Thus our assumed

particular solution of Eq.(14.10) is actually a solution of the ho-

mogeneous equation (14.13); consequently, it cannot possibly be

a solution of the non-homogeneous equation (14.10). To find a

solution of Eq.(14.10), we must therefore consider functions of a

somewhat different form.

At this stage, we look for a first order equation analogous to

Eq.(14.10). One possibility is the linear equation

y′ + y = 2e−t. (14.14)
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If we try to find a particular solution of Eq.(14.14) of the form

Ae−t, we will fail because e−t is a solution of the homogeneous

equation y′ + y = 0. However, to solve Eq.(14.14) we proceed as

follows: An integrating factor is µ(t) = et, and by multiplying by

µ(t) and then integrating both sides, we obtain the solution

y = 2te−t + ce−t. (14.15)

The second term on the right side of Eq.(14.15) is the general

solution of the homogeneous equation y′ + y = 0, but the first

term is a solution of the full nonhomogeneous equation (14.14).

Observe that it involves the exponential factor e−t multiplied by

the factor t. This is the clue that we were looking for.

We now return to Eq.(14.11) and assume a particular solution

of the form Y (t) = Ate−t. Then

Y ′(t) = Ae−t −Ate−t, Y ′′(t) = −2Ae−t +Ate−t (14.16)

Substituting these expressions for y, y′, and y′′ in Eq., we obtain

(−2A− 3A)e−t + (A+ 3A− 4A)te−t = 2e−t.

Hence −5A = 2, so A = −2
5 . Thus a particular solution is

Y (t) = −2
5
te−t.

The method discussed in the above example suggests the following
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modification rule.

RULE 2 (Modification rule) If g(t) in

ay′′ + by′ + cy = g(t) (14.17)

is one of the functions in column 1 of the Table and also a

solution of the homogeneous equation corresponding to (14.17),

the choice for yp is as follows:

Multiply the expression in the appropriate line of column 2 by

t if this solution corresponds to a simple root of the characteristic

equation of the corresponding homogeneous equation or by t2 if

this solution corresponds to a double root of the characteristic

equation of the corresponding homogeneous equation.

Example 12 (Using Rule 2 (Modification Rule)) Solve the initial

value problem

y′′ − y′ − 2y = 3e2t, y(0) = 0, y′(0) = −2.

Solution

Step 1: yh = c1e
−t + c2e

2t

Step 2: Since e2t appears in g(t) andyh, we have to apply Rule

2. Since 2 is a simple root of the characteristic equation of the

corresponding homogeneous equation, we have to multiply e2t byt.

Hence a choice for yp is

yp = C te2t.
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Substituting this into the non-homogeneous equation,

y′′p − y′p − 2yp = 3e2t

and we get

(
Ct et

)′′
−
(
C t et

)′
− 2

(
C t et

)
= 3e2t,

which on simplification and solving for C gives C = 1.

Hence yp = t et

Step 3 Hence the general solution is

y = y(x) = yh + yp = c1e
−t + c2e

2t + te2t.

Now to find the particular solution satisfying the given initial con-

ditions:

y(0) = 0 ⇒ c1 + c2 = 0.⇒ c1 = −c2.

Also, y′ = y′(t) = −c1e−t + 2c2e2t + e2t + 2te2t and hence

y′(0) = −2 ⇒ −c1+2c2+1 = −2 ⇒ 3c2 = −3 ⇒ c2 = −1.

Hence, c1 = − c2 = −1, and the general solution is given by

y = e−t − e2t + te2t.
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Example 13 Find a particular solution of

y′′ + y = sin t (14.18)

Solution

The reduced homogeneous equation y′′ + y = 0 has

y = c1 sin t+ c2 cos t

as its general solution, so it is useless to take yp = A sin t+B cos tas

a trial for the particular solution. Our choice is

yp = t(A sin t+B cos t).

This yields

y′p = A sin t+B cos t+ t(A cos t−B sin t)

and

y′′p = 2A cos t− 2B sin t+ t(−A sin t−B cos t)

and by substituting in (14.18) we obtain

2A cos t− 2B sin t = sin t.

Hence

A = 0 and B − 1
2
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satisfies our requirement, so

yp = −1
2 t cos t

is the desired particular solution.

RULE 2B (Modification and Sum Rules)

If g(t) in

ay′′ + by′ + cy = g(t) (14.19)

is a sum of functions in column 1 of the Table, and if at least one

of the functions is also a solution of the homogeneous equation

corresponding to (14.19), we use modification and sum rules for

the choice foryp. This is illustrated in the following example.

Example 14 (Using Rule 2B) Solve the nonhomogeneous equa-

tion

y′′ − 2y′ + y = (D − 1)2y = t+ et.

Solution

Step 1: It can be found out that the general solution to the

corresponding homogeneous equation y′′ − 2y′ + y = 0 is

yh = (c1 + c2t)et.

Step 2: Determination of yp:

Here g(t) is t+et. Note that et is a solution of the homogeneous

equation. Hence we have to apply Rule 2.



14.1. METHOD OF UNDETERMINED COEFFICIENTS 225

1 is double root of the characteristic equation

(λ− 1)2 = 0.

Hence by the modification rule the term et call for the particular

solution Ct2et, instead of Cet. Hence the choice for yp is

yp = K1t+K0 + Ct2et.

Substituting this into the given nonhomogeneous equation and

solving,

K1 = 1, K0 = 2, C =
1
2
,

so that

yp = t+ 2 +
1
2
t2et.

Step 3: The general solution to the nonhomogeneous equation is

y = yh + yp = (c1 + c2t)et + t+ 2 +
1
2
t2et.

Example 15 (Using Rule 2B) Solve the non homogeneous equa-

tion

y′′ − 4y′ + 4y = (D − 2)2y = t3e2t + te2t.

Solution

Step 1: The general solution to the corresponding homogeneous

equation y′′ − 4y′ + 4y = 0 is

yh = (c1 + c2t)e2t.
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Step 2: Determination of yp :

Here g(t) is t3e2t + te2t. Note that e2t is a solution of the homoge-

neous equation. Hence we have to apply Rule 2. 2 is the double

root of the characteristic equation

(λ− 2)2y = 0.

Hence by Rule 2, the term t3e2t call for the particular solution

t2 · t5e2t = t5e2t and its linearly independent derivatives (not con-

tained in g(t)). Hence the choice for yp is

yp = K3t
5e2t +K2t

4e2t +K1t
3e2t +K0t

2e2t.

(Note that terms involving te2t and e2t are not included, since they

appear inyh.) Substituting this into the given nonhomogeneous

equation and solving, we get

K3 =
1
20
, K2 = 0, K1 =

1
6
, K0 = 0,

so that

yp =
1
20
t5e2t +

1
6
t3e2t.

Step 3: The general solution to the nonhomogeneous equation is

y = (c1 + c2t)e2t +
1
20
t5e2t +

1
6
t3e2t.

Exercises Set A

In Exercises 1-7, find a particular solution of the differential equa-
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tions. Also give the general solution. [Note: In the following ex-

ample, we have the independent variable x instead of the variable

t ].

1. y′′ + y = 3x2

2. y′′ − y′ − 2y = 6ex

3. y′′ + 2y′ + 3y = 27x

4. y′′ + y = 6 sinx

5. y′′ + 4y′ + 4y = 18 coshx

6. (D2 − 1)y = 2x2

7. (D2 − 5D + 4)y = 10 cosx

In Exercises 8-21, find a general solution of the following

differential equations:

8. y′′ + y = x2 + x

9. y′′ + 3y′ + 2y = x3 + x

10. y′′ + 3y′ + y = 3ex

11. d2y
dx2 − 4 dy

dx + 3y = 10e−2x

12. y′′ − 2y′ + y = ex

13. y′′ − y′ − 2y = 6ex

14. (D2 − 1)y = 2x2

15. y′′ + 2y′ + y = cosx

16. (D2 + 1)y = 10ex sinx

17. y′′ − 3y′ + 2y = 4x+ e3x

18. (D2 + 1)y = sinx

19. d2y
dx2 − 3 dy

dx + 2y = x2 + e4x.

20.
(
D2 + 4

)
y = sin 2x.

21. d2y
dx2 − 5 dy

dx + 6y = sin 3x.

In Exercises 22-24, solve the initial value problems.

22. y′′ − y′ − 2y = 3e2x, y(0) = 0, y′(0) = −2
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23. y′′ − 4y′ + 3y = 4e3x, y(0) = −1, y′(0) = 3

24. y′′ + y′ − 2y = −6 sin 2x − 18 cos 2x, y(0) = 2, y′(0) = 2.

*Hint to Exercise 5: coshx = ex+e−x

2 .

Answers

1. 3x2 − 6, y = A cosx+B sinx+ 3x2 − 6

2. −3ex

3. 9x− 6

4. −3x cosx, y = A cosx+B sinx− 3x cosx

5. ex + 9e−x, y = (c1 + c2x) e−2x + ex + 9e−x

6. −2x2 − 4, y = c1e
x + c2e

−x − 2x2 − 4

7. 15
17 cosx− 25

17 sinx, y = c1e
x + c2e

4x 15
17 cosx− 25

17 sinx

8. A cosx+B sinx+ x2 + x− 2

9. c1e−x + c2e
−2x + 1

8(4x3 − 18x2 + 46x− 51)

10. c1e
−3−

√
5

2
x + c2e

−3+
√

5
2

x + 3
5e

x

11. c1ex + c2e
3x + 2

3e
−2x

12. (c1 + c2x)ex + 1
2x

2ex

13. c1e−x + c2e
2x − 3ex

14. c1e−x + c2e
2x + 2x2 + 4
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15. (c1 + c2x)ex + 1
2 sinx

16. A cosx+B sinx+ 2ex(sinx− 2 cosx)

17. c1ex + c2e
2x + 2x+ 3 + 1

2e
3x

18. A cosx+B sinx− x
2 cosx

19. c1ex + c2e
2x + e4x

6 + x2

2 + 3x
4 + 7

4

20. A cos 2x+B sin 2x− x
4 cos 2x

21. y = c1e
x + c2e

3x + 1
234 (15 cos 3x− 3 sin 3x) .

22. e−x − e2x + xe2x

23. e3x − 2ex + 2xe3x

24. 3 cos 2x− e−2x

Exercises Set B

In Exercises 1-11, find the general solution of each of the following

equations:

1. y′′ + 3y′ − 10y = 6e4x;

2. y + 4y = 3 sinx;

3. y′′ + 10y′ + 25y = 14e−5x;

4. y′′ − 2y′ + 5y = 25x2 + 12;

5. y′′ − y′ − 6y = 20e−2x;
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6. y′′ − 3y′ + 2y = 14 sin 2x− 18 cos 2x;

7. y′′ + y = 2 cosx;

8. y′′ − 2y′ = 12x− 10;

9. y′′ − 2y′ + y = 6ex;

10. y′′ − 2y′ + 2y = ex sinx

11. y′′ + y′ = 10x4 + 2.

12. If k and b are positive constants, find the general solution of

y′′ + k2y = sin bx.

13. Use Principle of Superposition to find the general solution

of

a) y′′ + 4y = 4 cos 2x+ 6 cosx+ 8x2 − 4x.

b) y′′ + 9y = 2 sin 3x+ 4 sinx− 26e−2x + 27x3.

Answers to Exercises Set B

1. y = c1e
2x + c2e

−5x + 1
3e

4x

2. y = c1 sin 2x+ c2 cos 2x+ sinx

3. y = c1e
−5x + c2xe

−5x + 7x2e−5x;

4. y = ex(c1 cos 2x+ c2 sin 2x) + 2 + 4x+ 5x2

5. y = c1e
3x + c2e

−2x − 4xe−2x
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6. y = c1e
x + c2e

2x + 2 sin 2x+ 3 cos 2x

7. y = c1 sinx+ c2 cosx+ x sinx

8. y = c1 + c2e
2x + 2x− 3x2

9. y = c1e
x + c2xe

x + 3x2ex

10. y = ex(c1 cosx+ c2 sinx)− 1
2xe

x cosx

11. y = c1 + c2e
−x + 2x5 − 10x4 + 40x3 − 120x2 + 242x.

12. y =

{
c1 sin kx+ c2 cos kx+ sin bx

k2−b2
if b 6= k

c1 sin kx+ c2 cos kx− x cos kx
2k if b = k

13. (a) y = c1 sin 2x+c2 cos 2x+x sin 2x+2 cosx−1−x+2x2.

(b) y = c1 sin 3x+ c2 cos 3x− 1
3x cos 3x+ 1

2 sinx− 2e−2x +

3x3 − 2x.



Chapter 15
Method of Variation of

Parameters

The method discussed in the last chapter is simple and has im-

portant engineering applications. But it applies only to constant-

coefficient equations with special right sidesg(t). In this chapter

we discuss the so-called method of variation of parameters,

which is completely general (but more complicated). That is, it

also applies to differential equations

y′′ + p(t)y′ + q(t)y = g(t) (15.1)

with arbitrary variable functionsp, q, and g that are continuous

on some interval I. The method gives a particular solution yp of

232
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(15.1) on I in the form

yp = −y1

∫
y2g

W
dt+ y2

∫
y1g

W
dt (15.2)

where y1, y2 form a fundamental set of solutions of the homogenous

equation

y′′ + p(t)y′ + q(t)y = 0 (15.3)

corresponding to (15.1) and

W = W (y1, y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ = y1y
′
2 − y2y

′
1 (15.4)

is the Wronskian of y1, y2.

Theorem If the functionsp, q, and g are continuous on an open

interval I, and if the functions y1 and y2 are a fundamental set of

solutions of the homogeneous equation

y′′ + p(t)y′ + q(t)y = 0 (15.5)

corresponding to the nonhomogeneous equation

y′′ + p(t)y′ + q(t)y = g(t) (15.6)

then a particular solution of Eq. (15.6) is

yp(t) = −y1(t)
∫ t

t0

y2(s) g(s)
w(y1, y2)(s)

ds+ y2(t)
∫ t

t0

y1(s) g(s)
W (y1, y2)(s)

ds,
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where t0 is any conveniently chosen point in I. The general solution

is

y = c1y1(t) + c2y2(t) + yp(t).

Attention! Before applying (15.2), make sure that your equa-

tion is written in the standard form (15.1). If the equation is

F (t) y′′ +G(t)y′ +R(t) = S(t),

with F (t) 6= 0, divide by F (t) and bring it to the form (15.1).

The integration in (15.2) may often cause difficulties. If you

have a choice , apply the method of undetermined coefficients. It

is simpler.

Example 1 (Method of variation of parameters)

Solve the differential equation

y′′ + y = sec t.

Solution

Step 1: The corresponding homogeneous equation is given by

y′′ + y = 0 and the corresponding characteristic equation is

λ2 + 1 = 0

which gives

λ = ±i.
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Hence

yh = e0t(A cos t+B sin t) = A cos t+B sin t

Step 2: From Step 1, the fundamental set of solutions of the

homogenous equation on any interval is

y1 = cos t, y2 = sin t.

Hence, we have the Wronskian

W (y1 , y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ = cos t cos t− sin t (− sin t) = 1.

Hence from (15.2), choosing the constants of integration to be

zero, we have

yp = − cos t
∫

sin t sec t dt+ sin t
∫

cos t sec t dt

= − cos t
∫

sin t
cos t

dt+ sin t
∫

cos t
cos t

dt

= − cos t(− ln |cos t|) + t sin t

= cos t ln |cos t|+ t sin t

Step 3: The general solution of the given nonhomogeneous

equation is

y = yh + yp = [c1 + ln |cos t|] cos t+ (c2 + t) sin t.
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Example 2 Solve by the method of variation of parameters:

(D2 + 4D + 4)y =
e−2t

t2

Solution

Step 1: The solution of the corresponding homogeneous equation

(D2 + 4D + 4)y = 0 is

yh = (c1 + c2t)e−2t.

Step 2: As the basis of solutions of the homogenous equation on

any interval is

y1 = e−2t, y2 = te−2t,

we have the Wronskian

W (y1 , y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣ e−2t te−2t

−2e−2t e−2t(1− 2t)

∣∣∣∣∣ = e−4t.

Hence from (15.2), choosing the constants of integration to be

zero, we have

yp = −e−2t

∫
te−2t

e−4t

e−2t

t2
dt+ te−2t

∫
e−2t

e−4t

e−2t

t2
dt

= −e−2t

∫
1
t
dt+ te−2t

∫
1
t2
dt = −e−2t ln |t|+ te−2t(−t−1)

= (− ln |t| − 1) e−2t
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Step 3: The general solution of the given nonhomogeneous equa-

tion is

y = yh + yp = (c1 + c2t− ln |t| − 1)e−2t.

Euler-Cauchy Equations

Now we consider the differential equation in which the homoge-

neous equation is Euler-Cauchy.

Example 3 Solve the following nonhomogeneous Euler-Cauchy

equation

t2y′′ − 4ty′ + 6y = 21t−4

by the method of variation of parameters.

Solution

Step 1: The solution of the corresponding homogeneous Euler-

Cauchy equation t2y′′ − 4ty′ + 6y = 0 is

yh = c1t
3 + c2t

2.

Step 2: As the basis of solutions of the homogenous equation on

any interval is

y1 = t3, y2 = t2,

we have the Wronskian

W (y1 , y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣ t3 t2

3t2 2t

∣∣∣∣∣ = −t4.

Now to use (15.2), we have to bring the given differential equation
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to the standard form (15.1) 1

Dividing by t2, we obtain

y′′ − 4
t
y′ +

6
t2
y = 21t−6.

Comparing with the standard equation (15.1), we have

g(t) = 21 t−6.

Hence from (15.2), choosing the constants of integration to be

zero, we have

yp = −t3
∫
t221t−6

−t4
dt+ t2

∫
t3

21t−6

−t4
dt

= 21t3
∫
t−8dt− 21t2

∫
t7 dt

= 21t3
t−7

−7
− 21t2

t6

−6

=
1
2
t−4

Step 3 The general solution of the given nonhomogeneous equa-

tion is

y = yh + yp = c1t
3 + c2t

2 +
1
2
t−4.

1Attention! Homogeneous equation corresponding the given differential
equation is not readily in the standard form of Euler-Cauchy equation.
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Example 4 Solve

ty′′ − y′ = (3 + t)t2et.

Solution

When multiplied by t, the given equation becomes the Euler-

Cauchy equation

t2y′′ − ty′ = (3 + t)t3et. (15.7)

Step 1: The solution of the corresponding homogeneous Euler-

Cauchy equation t2y′′ − ty′ = 0 is

yh = c1 + c2t
2.

Step 2: As the basis of solutions of the homogenous equation on

any interval is

y1 = 1, y2 = t2,

we have the Wronskian

W (y1 , y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣ 1 t2

0 2t

∣∣∣∣∣ = 2t.

Now to use (15.2), we have to bring the given differential equation

to the standard form (15.1). Dividing (15.7) by t2, we obtain

y′′ − 1
t
y′ = (3 + t)tet.
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Comparing with the standard equation (15.1), we have

g(t) = (3 + t)tet.

Hence from (15.2), choosing the constants of integration to be

zero, we have

yp = −
∫
t2(3 + t)tet

2t
dt+ t2

∫
(3 + t)tet

2t
dt

=
1
2

∫
(3 + t)t2et +

t2

2

∫
(3 + t)etdt.

The rest of the work is left as an exercise to the student.

Exercises

In Exercises 1-10, find the general solution of the nonhomogeneous

equation using method of variation of parameters.

1. y′′ − 4y′ + 4y = e2t

t

2. y′′ + 2y′ + y = e−t cos t

3. y′′ − 2y′ + y = et

t3

4. (D2 − 2D + 1)y = 3t3/2et

5. (D2 + 4D + 4)y = 2 e−2t

t2

6. y′′ + 9y = sec 3t

7. y′′ + 9y = csc 3t

8. y′′ − 4y′ + 5y = e2t csc t
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9. (D2 + 6D + 9)y = 16 e−3t

t2+1

10. (D2 + 2D + 2)y = 4e−t sec3 t

In Exercises 11-15, find the general solution of the nonhomo-

geneous Euler-Cauchy equation using method of variation of

parameters.

11. 4t2y′′ + 8ty′ − 3y = 7t2 − 15t3

12. (t2D2 − 2tD + 2)y = t3 cos t

13. (t2D2 + tD − 9)y = 48t5

14. (t2D2 − 4tD + 6)y = 7t4 sin t

15. (t2D2 + tD − 1)y = 1
t2

In each of Exercises 16-18, verify that the given functions

y1 and y2 satisfy the corresponding homogeneous equation;

then find a particular solution of the given non homogeneous

equation (In Exercise 18, g is an arbitrary continuous func-

tion.)

16. t2y′′− t(t+2)y′+(t+2)y = 2t3, t > 0; y1(t) = t, y2(t) = tet

17. x2y′′ + xy′ + (x2 − 0.25)y = 3x3/2 sin x, x > 0; y1(x) =

x−1/2 sin x, y2(x) = x−1/2 cos x

18. (1− x)y′′ + xy′− y = g(x), 0 < x < 1; y1(x) = ex, y2(x) =

x.

Answers
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1. (c1 + c2t+ t ln |t| − t) e2t

2. (c1 + c2t− cos t) e−t

3. (c1 + c2t) et + 1
2

et

t

4.
(
c1 + c2t+ 12

35 t
7/2
)
et

5. (c1 + c2t− 2 ln |t|) e−2t

11. c1t1/2 + c2t
−3/2 + 1

3(t2 − t3)

12. c1t+ c2t
2 − t cos t

13. c1t3 + c2t
−3 + 3t5

16. yp(t) = −2t2

17. yp(x) = −3
2x

1/2 cosx

18. yp(x) =
∫

xet−tex

(1−t)2 et g(t) dt



Chapter 16
Series Solutions Near an

Ordinary Point

16.1 Series Solutions Near an Ordinary Point,

Part I

In previous chapters we described methods of solving second-order

linear differential equations with constant coefficients. We now

consider methods of solving second-order linear equations when

the coefficients are functions of the independent variable. In this

chapter we will denote the independent variable by x. It is

sufficient to consider the homogeneous equation

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0, (16.1)

243
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since the procedure for the corresponding nonhomogeneous equa-

tion is similar.

Many problems in mathematical physics lead to equations of

the form (16.1) having polynomial coefficients;

examples include the Bessel equation

x2y′′ + xy′ + (x2 − υ2)y = 0, (16.2)

where υ is a constant, and the Legendre equation

(1− x2)y′′ − 2xy′ + α(α+ 1)y = 0, (16.3)

where α is a constant. For this reason, as well as to simplify the

algebraic computations, we primarily consider the case in which

the functions P, Q, and R are polynomials. However, as we will

see, the method of solution is also applicable when P, Q, and R

are general analytic functions.

For the present, then, suppose that P, Q, and R are

polynomials and that there is no factor (x − c) that is common

to all three of them. If there is such a common factor (x − c),

then divide it out before proceeding. Suppose also that we wish

to solve equation (16.1) in the neighborhood of a point x0. The

solution of equation (16.1) in an interval containing x0 is closely

associated with the behavior of P in that interval.

A point x0 such that P (x0) 6= 0 is called an ordinary point.

Since P is continuous, it follows that there is an open interval
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containing x0 in which P (x) is never zero. In that interval, which

we will call I, we can divide equation (16.1) by P (x) to obtain

y′′ + p(x)y′ + q(x)y = 0, (16.4)

where p(x) = Q(x)/P (x) and q(x) = R(x)/P (x) are continuous

functions on I. Hence, according to the existence and uniqueness

theorem (Theorem 1 in Page 161), there exists a unique solution

of equation (16.1) in the interval I that also satisfies the initial

conditions y(x0) = y0 and y′(x0) = y′0 for arbitrary values of y0 and

y′0. We discuss the solution of equation (16.1) in the neighborhood

of an ordinary point. On the other hand, if P( x0) = 0, then x0

is called a singular point of equation (16.1). In this case, because

(x− x0) is not a factor of P, Q, and R, at least one of Q(x0) and

R(x0) is not zero. Consequently, at least one of the coefficients

p and q in equation (16.4) becomes unbounded as x → x0, and

therefore existence and uniqueness theorem does not apply in

this case. The method to find solutions of equation (16.1) in the

neighborhood of a singular point is not discussed in this study

material.

We now take up the problem of solving equation (16.1) in the

neighborhood of an ordinary point x0. We look for solutions of the

form

y = a0 + a1(x− x0) + · · ·+ an(x− x0)n + · · · =
∞∑

n=0

an(x− x0)n

(16.5)
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and assume that the series converges in the interval |x − x0| < ρ

for some ρ > 0.

While at first sight it may appear unattractive to seek a solu-

tion in the form of a power series, this is actually a convenient and

useful form for a solution. Within their intervals of convergence,

power series behave very much like polynomials and are easy to

manipulate both analytically and numerically. Indeed, even if we

can obtain a solution in terms of elementary functions, such as

exponential or trigonometric functions, we are likely to need a

power series or some equivalent expression if we want to evaluate

the solution numerically or to plot its graph.

The most practical way to determine the coefficients an is to

substitute the series (16.5) and its derivatives for y, y′, and y′′ in

equation (16.1). The following examples illustrate this process.

The operations, such as differentiation, that are involved in the

procedure are justified so long as we stay within the interval of

convergence. The differential equations in these examples are also

of considerable importance in their own right.

Example 1 Find a series solution of the equation

y′′ + y = 0, −∞ < x <∞. (16.6)

Solution

We look for a solution of the form of a power series about
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x0 = 0

y = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n + · · · =

∞∑
n=0

anx
n (16.7)

and assume that the series converges in some interval |x| < ρ.

Differentiating equation (16.7) term by term, we obtain

y′ =
dy

dx
= a1 + 2a2x+ 3a3x

2 + · · ·+nanx
n−1 + · · · =

∞∑
n=1

nanx
n−1

(16.8)

and

y′′ = 2a2+3·2a3x+· · ·+n(n−1)anx
n−2+· · · =

∞∑
n=2

n(n−1)anx
n−2.

(16.9)

Substituting the series (16.7), (16.8), and (16.9) into the equation

(16.6) and obtain

(2a2 + 3 · 2a3x+ 4 · 3a4x
2 + · · · ) + (a0 + a1x+ a2x

2 + · · · ) = 0.

That is,
∞∑

n=2

n(n− 1)anx
n−2 +

∞∑
n=0

anx
n = 0.

To combine the two series, we need to rewrite at least one of them

so that both series display the same generic term. Thus, in the

first sum, we shift the index of summation by replacing n by n+2
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and starting the sum at 0 rather than 2. We obtain

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

anx
n = 0

or
∞∑

n=0

((n+ 2)(n+ 1)an+2 + an)xn = 0.

For this equation to be satisfied for all x, the coefficient of each

power of x must be zero; hence we conclude that

(n+ 2)(n+ 1)an+2 + an = 0, n = 0, 1, 2, 3, . . . (16.10)

Equation (16.10) is referred to as a recurrence relation. The

successive coefficients can be evaluated one by one by writing the

recurrence relation first for n = 0, then for n = 1, and so forth. In

this example equation (16.10) relates each coefficient to the second

one before it. Thus the even numbered coefficients (a0, a2, a4, . . .)

and the odd-numbered ones (a1, a3, a5, . . .) are determined sepa-

rately. For the even-numbered coefficients we have

a2 =
a0

2 · 1
=
a0

2!
, a4 = − a2

4 · 3
=
a0

4!
, a6 = − a4

6 · 5
= −a0

6!
, . . .

These results suggest that in general, if n = 2k, then

an = a2k =
(−1)k

(2k)!
a0, k = 1, 2, 3, . . . (16.11)

We can prove equation (16.11) by mathematical induction.
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First, observe that it is true for k = 1. Next, assume that it is

true for an arbitrary value of k and consider the case k + 1. We

have

a2k+2 = − a2k

(2k + 2)(2k + 1)
= − (−1)k

(2k + 2)(2k + 1)(2k)!
a0 =

(−1)k

(2k + 2)!
a0.

Hence equation (16.11) is also true for k + 1, and consequently it

is true for all positive integers k.

Similarly, for the odd-numbered coefficients

a3 = − a1

2 · 3
= −a1

3!
, a5 = − a3

5 · 4
=
a1

5!
, a7 = − a5

7 · 6
= −a1

7!
, . . .

and in general, if n = 2k + 1, then

an = a2k+1 =
(−1)k

(2k + 1)!
a1, k = 1, 2, 3, . . .

Substituting these coefficients into equation (16.7), we have

y = a0 + a1x−
a0

2!
x2 − a1

3!
x3 +

a0

4!
x4 +

a1

5!
x5

+ · · ·+ (−1)na0

(2n)!
x2n +

(−1)na1

(2n)!
x2n+1 + · · ·
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= a0

[
1− x2

2!
+
x4

4!
+ · · ·+ (−1)n

(2n)!
x2n + · · ·

]
+a1

[
x− x3

3!
+
x5

5!
+ · · ·+ (−1)n

(2n+ 1)!
x2n+1 + · · ·

]
= a0

∞∑
n=0

(−1)n

(2n)!
x2n + a1

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1. (16.12)

We identify two series solutions of equation (16.6):

y1(x) =
∞∑

n=0

(−1)n

(2n)!
x2n and y2(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1.

Remark In Example 1 we knew from the start that sinx

and cosx form a fundamental set of solutions of equation (16.6).

However, if we had not known this and had simply solved equa-

tion (16.6) using series methods, we would still have obtained the

solution (16.12). In recognition of the fact that the differential

equation (16.6) often occurs in applications, we might decide to

give the two solutions of equation (16.12) special names, perhaps

C(x) =
∞∑

n=0

(−1)n

(2n)!
x2n, S(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1. (16.13)

Then we might ask what properties these functions have. For

instance, can we be sure that C(x) and S(x) form a fundamental

set of solutions? It follows at once from the series expansions that

C(0) = 1 and S(0) = 0. By differentiating the series for C(x) and
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S(x) term by term, we find that

S′(x) = C(x), C ′(x) = −S(x). (16.14)

Thus at x = 0, we have S′(0) = C(0) = 1 and C ′(0) = −S(0) = 0.

Consequently, the Wronskian of C and S at x = 0 is

W [C, S](0) =

∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣ = 1, (16.15)

so these functions do indeed form a fundamental set of solutions.

By substituting −x for x in each of equations (16.15), we obtain

C(−x) = C(x) and S(−x) = −S(x). Moreover, by calculating

with the infinite series, we can show that the functions C(x) and

S(x) have all the usual analytical and algebraic properties of the

cosine and sine functions, respectively.

Definition of sinx and cosx in terms of initial value problem

Although you probably first saw the sine and cosine functions

defined in a more elementary manner in terms of right triangles,

it is interesting that these functions can be defined as solutions of

a certain simple second-order linear differential equation. To be

precise, the function sinx can be defined as the unique solution of

the initial-value problem y” + y = 0, y(0) = 0, y′(0) = 1; simi-

larly, cosx can be defined as the unique solution of the initial-value

problem y′′ + y = 0, y(0) = 1, y′(0) = 0. Many other functions

that are important in mathematical physics are also defined as

solutions of certain initial-value problems. For most of these func-
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tions there is no simpler or more elementary way to approach

them.

Example 2 Find a series solution in powers of x of Airy’s1 equa-

tion

y′′ − xy = 0, −∞ < x <∞. (16.16)

Solution

For this equation P (x) = 1, Q(x) = 0, and R(x) = −x; hence

every point is an ordinary point. We assume that

y =
∞∑

n=0

anx
n (16.17)

and that the series converges in some interval |x| < ρ. The series

for y” is given by equation (16.9); as explained in the preceding

example, we can rewrite it as

y′′ =
∞∑

n=0

(n+ 2)(n+ 1)an+2x
n. (16.18)

Substituting the series (16.17) and (16.18) for y and y′′ into the

1Sir George Biddell Airy (1801 -1892), an English astronomer and mathe-
matician, was director of the Greenwich Observatory from 1835 to 1881. He
studied the equation named for him in an 1838 paper on optics. One reason
why Airy’s equation is of interest is that for x negative the solutions are similar
to trigonometric functions, and for x positive they are similar to hyperbolic
functions.
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left-hand side of equation (16.16), we obtain

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n − x

∞∑
n=0

anx
n

=
∞∑

n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=0

anx
n+1 (16.19)

Next, we shift the index of summation in the second series on

the right-hand side of equation (16.19) by replacing n by n − 1

and starting the summation at 1 rather than zero. Thus we write

equation (16.16) as

2 · 1a2 +
∞∑

n=1

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

an−1x
n = 0.

Again, for this equation to be satisfied for all x in some interval,

the coefficients of like powers of x must be zero; hence a2 = 0, and

we obtain the recurrence relation

(n+ 2)(n+ 1)an+2 − an−1 = 0 for n = 1, 2, 3, . . . (16.20)

Since an+2 is given in terms of an−1, the a′s are determined in

steps of three. Thus a0 determines a3, which in turn determines

a6, . . . ; a1 determines a4, which in turn determines a7, . . . , ; and

a2 determines a5, which in turn determines a8, . . . . Since a2 = 0,

we immediately conclude that a5 = a8 = a11 = · · · = 0.

For the sequence a0, a3, a6, a9, . . . we set n = 1, 4, 7, 10, . . .
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in the recurrence relation:

a3 =
a0

2 · 3
, a6 =

a3

5 · 6
=

a0

2 · 3 · 5 · 6
,

a9 =
a6

8 · 9
=

a0

2 · 3 · 5 · 6 · 8 · 9
, . . .

These results suggest the general formula

a3n =
a0

2 · 3 · 5 · 6 · · · (3n− 1)(3n)
, n ≥ 4.

For the sequence a1, a4, a7, a10, . . . , we set n = 2, 5, 8, 11, . . .

in the recurrence relation:

a4 =
a1

3 · 4
, a7 =

a4

6 · 7
=

a1

3 · 4 · 6 · 7
,

a10 =
a7

9 · 10
=

a1

3 · 4 · 6 · 7 · 9 · 10
, . . .

In general, we have

a3n+1 =
a1

3 · 4 · 6 · 7 · · · (3n)(3n+ 1)
, n ≥ 4.

Thus the general solution of Airy’s equation is

y(x) =

a0

[
1 +

x3

2 · 3
+

x6

2 · 3 · 5 · 6
+ · · ·+ x3n

2 · 3 · 5 · 6 · · · (3n− 1)(3n)
+ · · ·

]

+a1

[
x+

x4

3 · 4
+

x7

3 · 4 · 6 · 7
+ · · ·+ x3n+1

3 · 4 · 6 · 7 · · · (3n)(3n+ 1)
+ · · ·

]
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= a0y1(x) + a1y2(x) (16.21)

where y1(x) and y2(x) are the first and second bracketed expres-

sions in equation (16.21).

Having obtained these two series solutions, we can now in-

vestigate their convergence. Because of the rapid growth of the

denominators of the terms in the series for y1(x) and for y2(x), we

might expect these series to have a large radius of convergence.

Indeed, it is easy to use the ratio test2 to show that both of these

series converge for all x.

Assume for the moment that the series for y1 and y2 do

converge for all x. Then, by choosing first a0 = 1, a1 = 0 and

then a0 = 0, a1 = 1, it follows that y1 and y2 are individually

solutions of equation (16.16). Notice that y1 satisfies the initial

conditions y1(0) = 1, y′1(0) = 0 and that y2 satisfies the initial

conditions y2(0) = 0, y′2(0) = 1. Thus W [y1, y2](0) = 1 6= 0, and

consequently y1 and y2 are a fundamental set of solutions. Hence

the general solution of Airy’s equation is

y = a0y1(x) + a1y2(x) −∞ < x <∞.

2If the sequence
∣∣∣ an + 1

an

∣∣∣ , n = 1, 2, . . . is convergent with the limit L,

then the radius of convergence R of the power series

∞∑
n = 0

an (z − z0)
n = a0 + a1 (z − z0) + a2 (z − z0)

2 + . . .

is R = 1
L

when L > 0 and R = ∞ when L = 0.
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Example 3 Find a solution of Airy’s equation in powers of x− 1.

Solution

The point x = 1 is an ordinary point of equation (16.16), and

thus we look for a solution of the form

y =
∞∑

n=0

an(x− 1)n,

where we assume that the series converges in some interval |x−1| <
ρ. Then

y′ =
∞∑

n=1

nan(x− 1)n−1 =
∞∑

n=0

(n+ 1)an+1(x− 1)n,

and

y′′ =
∞∑

n=2

n(n− 1)an(x− 1)n−2 =
∞∑

n=0

(n+ 2)(n+ 1)an+2(x− 1)n

Substituting for y and y′′ in equation (16.16), we obtain

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− 1)n = x

∞∑
n=0

an(x− 1)n. (16.22)

Now to equate the coefficients of like powers of (x − 1), we must

express x, the coefficient of y in equation (16.16), in powers of

x− 1; that is, we write x = 1 + (x− 1). Note that this is precisely

the Taylor series for x about x = 1. Then equation (16.22) takes



16.1. SERIES SOLUTIONS 257

the form

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− 1)n = (1 + (x− 1))
∞∑

n=0

an(x− 1)n

=
∞∑

n=0

an(x− 1)n +
∞∑

n=0

an(x− 1)n+1.

Shifting the index of summation in the second series on the right

gives

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− 1)n =
∞∑

n=0

an(x− 1)n+
∞∑

n=1

an−1(x− 1)n.

Equating coefficients of like powers of x− 1, we obtain

2a2 = a0,

(3 · 2)a3 = a1 + a0,

(4 · 3)a4 = a2 + a1,

(5 · 4)a5 = a3 + a2,

...

The general recurrence relation is

(n+ 2)(n+ 1)an+2 = an + an−1 for n ≥ 1 . (16.23)

Solving for the first few coefficients an in terms of a0 and a1, we

find that
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a2 =
a0

2
, a3 =

a1

6
+
a0

6
, a4 =

a2

12
+
a1

12
=

a0

24
+
a1

12
,

a5 =
a3

20
+
a2

20
=

a0

30
+

a1

120
.

Hence

y = a0

[
1 +

(x− 1)2

2
+

(x− 1)3

6
+

(x− 1)4

24
+

(x− 1)5

30
+ · · ·

]
+a1

[
(x− 1) +

(x− 1)3

6
+

(x− 1)4

12
+

(x− 1)5

120
+ · · ·

]
(16.24)

In general, when the recurrence relation has more than two

terms, as in equation (16.23), the determination of a formula for

an in terms a0 and a1 will be fairly complicated, if not impossible.

In this example such a formula is not readily apparent. Lacking

such a formula, we cannot test the two series in equation (16.24)

for convergence by direct methods such as the ratio test. However,

we shall see shortly that even without knowing the formula for an,

it is possible to establish that the two series in equation (16.24)

converge for all x. Further, they define functions y3 and y4 that

are a fundamental set of solutions of the Airy equation (16.16).

Thus

y = a0y3(x) + a1y4(x)

is the general solution of Airy’s equation for ∞ < x <∞.
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16.2 Series Solutions Near an Ordinary Point,

Part II

In the preceding section we considered the problem of finding so-

lutions of

P (x)y′′ +Q(x)y′ +R(x)y = 0, (16.25)

where P, Q, and R are polynomials, in the neighborhood of an

ordinary point x0. Assuming that equation (16.25) does have a

solution y = φ(x) and that φ has a Taylor series

φ(x) =
∞∑

n=0

an(x− x0)n (16.26)

that converges for |x−x0| < ρ, where ρ > 0, we found that the an

can be determined by directly substituting the series (16.26) for y

in equation (16.25).

Let us now consider how we might justify the statement that

if x0 is an ordinary point of equation (16.25), then there exist

solutions of the form (16.26). We also consider the question of the

radius of convergence of such a series. In doing this, we are led to

a generalization of the definition of an ordinary point.

Suppose, then, that there is a solution of equation (16.25) of

the form (16.26). By differentiating equation (16.26) m times and

setting x equal to x0, we obtain

m!am = φ(m)(x0). (16.27)
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Hence, to compute an in the series (16.26), we must show that we

can determine φ(n)(x0) for n = 0, 1, 2, . . . from the differential

equation (16.25).

Suppose that y = φ(x) is a solution of equation (16.25) satis-

fying the initial conditions y(x0) = y0, y
′(x0) = y′0. Then a0 = y0

and a1 = y′0. If we are solely interested in finding a solution of

equation (16.25) without specifying any initial conditions, then a0

and a1 remain arbitrary. To determine φ(n)(x0) and the corre-

sponding an for n = 2, 3, . . . , we turn to equation (16.25) with

the goal of finding a formula for φ′′(x), φ′′′(x), . . . .

Since φ is a solution of equation (16.25), we have

P (x)φ′′(x) +Q(x)φ′(x) +R(x)φ(x) = 0.

For the interval about x0 for which P is nonzero, we can write this

equation in the form

φ′′(x) = −p(x)φ′(x)− q(x)φ(x). (16.28)

where p(x) = Q(x)/P (x) and q(x) = R(x)/P (x) Observe that,

at x = x0, the right-hand side of equation (16.28) is known, thus

allowing us to compute φ′′(x0) : Setting x equal to x0 in equation

(16.28) gives

φ′′(x0) = −p(x0)φ′(x0)− q(x0)φ(x0) = −p(x0)a1 − q(x0)a0.

Hence, using equation (16.27) with m = 2, we find that a2 is given
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by

2!a2 = φ′′(x0) = −p(x0)a1 − q(x0)a0. (16.29)

To determine a3, we differentiate equation (16.28) and then set

x equal to x0, obtaining

3!a3 = φ′′′(x0) = −
(
p(x)φ′(x) + q(x)φ(x)

)′∣∣∣
x=x0

= −2!p(x0)a2 −
(
p′(x0) + q(x0)

)
a1 − q′(x0)a0.(16.30)

Substituting for a2 from equation (16.29) gives a3 in terms of a1

and a0.

Since P, Q, and R are polynomials and P (x0) 6= 0, all the

derivatives of p and q exist at x0. Hence we can continue to differ-

entiate equation (16.28) indefinitely, determining after each differ-

entiation the successive coefficients a4, a5, . . . by setting x equal

to x0.

Example 4 Let y = φ(x) be a solution of the initial value problem

(1 + x2)y′′ + 2xy′ + 4x2y = 0, y(0) = 0, y′(0) = 1.

Determine φ′′(0), φ′′′(0), and φ(4)(0).

Solution

To find φ′′(0), simply evaluate the differential equation when

x = 0 :

(1 + 02)φ′′(0) + 2 · 0φ′(0) + 4 · 02φ(0) = 0,
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so

φ′′(0) = 0.

To find φ′′′(0), differentiate the differential equation with respect

to x :

(1+x2)φ′′′(x)+2xφ′′(x)+2xφ′′(x)+2φ′(x)+4x2φ′(x)+8φ(x) = 0.

(16.31)

Then evaluate the resulting equation (16.31) at x = 0 :

φ′′′(0) + 2φ′(0) = 0.

Thus

φ′′′(0) = −2φ′(0) = −2

because φ′(0) = y′(0) = 1.

Finally, to find φ(4)(0), first differentiate equation (16.31) with

respect to x :

(1 + x2)φ(4)(x) +2xφ′′′(x) + 4xφ′′′(x) + 4φ′′(x)

+(2 + 4x2)φ′′(x) + 8xφ′(x) + 8xφ′(x) + 8φ(x) = 0.

Evaluating this equation at x = 0 we find

φ(4)(0) + 6φ′′(0) + 8φ(0) = 0.

Finally, using φ(0) = 0 and φ′′(0) = 0, we conclude that φ(4)(0) =
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0.

Notice that the important property that we used in determin-

ing the an was that we could compute infinitely many derivatives

of the functions p and q. It might seem reasonable to relax our as-

sumption that the functions p and q are ratios of polynomials and

simply require that they be infinitely differentiable in the neigh-

borhood of x0. Unfortunately, this condition is too weak to ensure

that we can prove the convergence of the resulting series expansion

for y = φ(x). What is needed is to assume that the functions p and

q are analytic at x0; that is, they have Taylor series expansions

that converge to them in some interval about the point x0 :

p(x) = p0 + p1(x−x0)+ · · ·+ pn(x−x0)n + · · · =
∞∑

n=0

pn(x− x0)n,

(16.32)

q(x) = q0 + q1(x− x0) + · · ·+ qn(x− x0)n + · · · =
∞∑

n=0

qn(x− x0)n.

(16.33)

With this idea in mind, we can generalize the definitions of an

ordinary point and a singular point of equation (16.25) as follows:

if the functions p(x) = Q(x)/P (x) and q(x) = R(x)/P (x) are

analytic at x0, then the point x0 is said to be an ordinary point

of the differential equation (16.25); otherwise, it is a singular

point.
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Now let us turn to the question of the interval of convergence

of the series solution. One possibility is actually to compute the

series solution for each problem and then to apply one of the tests

for convergence of an infinite series to determine its radius of con-

vergence. Unfortunately, these tests require us to obtain an ex-

pression for the general coefficient an as a function of n, and this

task is often quite difficult, if not impossible. However, the ques-

tion can be answered at once for a wide class of problems by the

following theorem.

Theorem 1 If x0 is an ordinary point of the differential equa-

tion (16.25)

P (x)y′′ +Q(x)y′ +R(x)y = 0,

that is, if p(x) = Q(x)/P (x) and q(x) = R(x)/P (x) are analytic

at x0, then the general solution of equation (16.25) is

y =
∞∑

n=0

an(x− x0)n = a0y1(x) + a1y2(x),

where a0 and a1 are arbitrary, and y1 and y2 are two power series

solutions that are analytic at x0. The solutions y1 and y2 form a

fundamental set of solutions. Further, the radius of convergence

for each of the series solutions y1 and y2 is at least as large as the

minimum of the radii of convergence of the series for p and q.

Example 5 What is the radius of convergence of the Taylor series

for (1 + x2)−1 about x = 0?

Solution
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One way to proceed is to find the Taylor series in question,

namely,

1
1 + x2

= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n + · · ·

Then it can be verified by the ratio test that ρ = 1. Another

approach is to note that the zeros of 1 + x2 are x = ±i. Since the

distance in the complex plane from 0 to i or to −i is 1, the radius

of convergence of the power series about x = 0 is 1.

Example 6 What is the radius of convergence of the Taylor series

for (x2 − 2x+ 2)−1 about x = 0? about x = 1?

Solution

First notice that

x2 − 2x+ 2 = 0

has solutions x = 1 ± i. The distance in the complex plane from

x = 0 to either x = 1 + i or x = 1 − i is
√

2; hence the radius of

convergence of the Taylor series expansion
∞∑

n=0
anx

n about x = 0

is
√

2.

The distance in the complex plane from x = 1 to either x = 1+i

or x = 1 − i is 1; hence the radius of convergence of the Taylor

series expansion
∞∑

n=0
bn(1− x)n about x = 1 is 1.

Example 7 Determine a lower bound for the radius of convergence

of series solutions about x = 0 for the Legendre equation

(1− x2)y′′ − 2xy′ + α(α+ 1)y = 0,
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where α is a constant.

Solution

Note that P (x) = 1 − x2, Q(x) = −2x, and R(x) = α(α + 1)

are polynomials, and that the zeros of P, namely, x = ±1, are a

distance 1 from x = 0. Hence a series solution of the form
∞∑

n=0
anx

n

converges at least for |x| < 1, and possibly for larger values of x.

Indeed, it can be shown that if α is a positive integer, one of the

series solutions terminates after a finite number of terms, that

is, one solution is a polynomial, and hence converges not just for

|x| < 1 but for all x. For example, if α = 1, the polynomial solution

is y = x.

Example 8 Determine a lower bound for the radius of convergence

of series solutions of the differential equation

(1 + x2)y′′ + 2xy′ + 4x2y = 0 (16.34)

about the point x = 0; about the point x = −1
2 .

Solution

Again P, Q, andR are polynomials, and P has zeros at x = ±i.
The distance in the complex plane from 0 to ±i is 1, and from −1

2

to ±i is
√

1 + 1
4 =

√
5

2 . Hence in the first case the series
∞∑

n=0
anx

n

converges at least for |x| < 1, and in the second case the series
∞∑

n=0
bn
(
x+ 1

2

)n converges at least for
∣∣x+ 1

2

∣∣ < √
5

2 .

An interesting observation that we can make about equation

(16.34) is the following. Suppose that initial conditions y(0) = y0

and y′(0) = y′0 are given. Since 1 + x2 6= 0 for all x, there exists
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a unique solution of the initial-value problem on −∞ < x < ∞.

On the other hand, it only guarantees a series solution of the form
∞∑

n=0
anx

n (with a0 = y0, a1 = y′0) for −1 < x < 1. The unique

solution on the interval −∞ < x < ∞ may not have a power

series about x = 0 that converges for all x.

Example 9 Can we determine a series solution about x = 0 for

the differential equation

y′′ + (sinx)y′ + (1 + x2)y = 0,

and if so, what is the radius of convergence?

Solution

For this differential equation, p(x) = sinx and q(x) = 1 + x2.

Recall from calculus that sinx has a Taylor series expansion about

x = 0 that converges for all x. Further, q also has a Taylor series

expansion about x = 0, namely, q(x) = 1 + x2, that converges for

all x. Thus there is a series solution of the form y =
∞∑

n=0
anx

n with

a0 and a1 arbitrary, and the series converges for all x.



Chapter 17
Laplace and Inverse Laplace

Transforms

17.1 Introduction

The Laplace1 transformation is a powerful method for solving lin-

ear differential equations arising in engineering and mathematics.

In this method the given differential equation is transformed into

an algebraic equation (called subsidiary equation) and is solved

purely by algebraic manipulations. Finally the solution of the

subsidiary equation is transformed back to get the required solu-

tion of the original differential equation. Hence the place Laplace

transformation reduces the problem of solving a differential equa-

1French mathematician Pierre Simon De Laplace (1749-1827) made impor-
tant contributions to celestial mechanics and probability theory.

268
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tion to an algebraic problem.

Before discussing the possible existence of
∫∞
a f(t) dt, it is

helpful to define certain terms. A function f is said to be piece-

wise continuous on an interval α ≤ t ≤ β if the interval can be

partitioned by a finite number of points α = t0 < t1 < · · · < tn = β

so that

1. f is continuous on each open subinterval ti−1 < t < ti.

2. f approaches a finite limit as the endpoints of each subinterval

are approached from within the subinterval.

In other words, f is piecewise continuous on α ≤ t ≤ β if it is

continuous there except for a finite number of jump discontinuities.

If f is piecewise continuous on α ≤ t ≤ β for every β > α, then

f is said to be piecewise continuous on t ≥ α. An example of a

piecewise continuous function is shown in Fig.17.1.

Figure 17.1:

The integral of a piecewise continuous function on a finite interval
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is just the sum of the integrals on the subintervals created by

the partition points. For instance, for the function f(t) shown in

Fig.17.1, we have∫ β

α
f(t)dt =

∫ t1

α
f(t)dt+

∫ β

t1

f(t)dt (17.1)

For the function shown in Fig. 17.1 we have assigned values

to the function at the endpoints α and β , and at the partition

pointt1. However, as far as the integrals in Eq.(17.1) are con-

cerned, it does not matter whether f(t) is defined at these points,

or what values may be assigned to f(t) at these points. The values

of the integrals in Eq.(17.1) remain the same regardless.

Thus, if f is piecewise continuous on the intervala ≤ t ≤ A,

then
∫ A
a f(t) dt exists. Hence, if f is piecewise continuous for t ≥ a,

then
∫ A
a f(t) dt exists for each A > a. However, piecewise continu-

ity is not enough to ensure convergence of the improper integral∫∞
a f(t) dt.

If f cannot be integrated easily in terms of elementary func-

tions, the definition of convergence of
∫∞
a f(t) dt may be difficult

to apply. Frequently, the most convenient way to test the con-

vergence or divergence of an improper integral is by the following

comparison theorem which is analogous to a similar theorem for

infinite series.

Theorem A (Comparison Theorem) If f is piecewise

continuous for t ≥ a, if |f(t)| ≤ g(t) when t ≥ M for some posi-

tive constant M, and if
∫∞
M g(t) dt converges, then

∫∞
a f(t) dt also
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converges. On the other hand, if f(t) ≥ g(t) ≥ 0 for t ≥ M , and

if
∫∞
M g(t) dt diverges, then

∫∞
a f(t) dt also diverges.

Integral Transforms

Among the tools that are very useful for solving linear differ-

ential equations are integral transforms. An integral transform

is a relation of the form

F (s) =
∫ β

α
K(s, t) f(t) dt (17.2)

where K(s, t) is a given function, called the kernel of the trans-

formation, and the limits of integration α and β are also given. It

is possible that α = −∞ or β = ∞, or both. The relation (17.2)

transforms the function f into another function F, which is called

the transform of f. In the next definition we see that Laplace

transform makes use of the kernel K(s, t) = e−st.

17.2 The Laplace Transform

Definition Let f(t) be a given function which is defined for all

t ≥ 0. We multiply f(t) by e−st and integrate with respect to t

from 0 to ∞, then, if the resulting integral exists, it is a function

of s, denoted by F (s) and defined by

F (s) =
∫ ∞

0
e−stf(t)dt.

The function F (s) is called the place Laplace transformation
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of the original function. In symbols we write

L[f(t)] =
∫ ∞

0
e−stf(t)dt = F (s)

where s is a real or complex parameter.

Remarks

1. If the integral
∫∞
0 e−stf(t)dt converges for some value of s,

then the Laplace transform of f(t) is said to exist, otherwise

it does not exist.

2. The operator L that transforms f(t) into F (s) is called the

Laplace transform operator.

Notation Original functions are denoted by lowercase letters and

their Laplace transforms by the same letters in capitals, so that

F (s) denotes the transform of f(t), and Y (s) denote the transform

of y(t), and so on.

Example 1 Find the Laplace transform of the following functions

(a) 0 (b) 1 (c) t (d) eat (e) e−at (f) ei at

Solution

(a) Here f(t) = 0. Hence

L[0] =
∫ ∞

0
e−st · 0dt =

∫ ∞

0
0dt = 0.

(b) L[1] =
∫∞
0 e−st · 1 dt =

∫∞
0 e−stdt

Now the interval of integration of
∫∞
0 e−stdt is infinite and hence
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the integral is an improper integral. We first evaluate it.∫ ∞

0
e−stdt = lim

b→∞

∫ b

0
e−stdt

= lim
b→∞

[
e−st

−s

]b

0

=
1
−s

lim
b→∞

(
e−sb − e0

)
=

1
−s

(0− 1) for s > 0, since

lim
b→∞

e−sb = 0, for s > 0

=
1
s
, if s > 0

Hence

L[1] =
1
s

for s > 0.

(c) L[t] =
∫∞
0 e−st · t dt =

∫∞
0 t e−stdt

Now we evaluate the improper integral
∫∞
0 t e−stdt as follows:

∫ ∞

0
te−stdt = lim

b→∞

∫ b

0
te−stdt = lim

b→∞

{[
t
e−st

−s

]b

0

−
∫ b

0
1.
e−st

−s
dt

}
(17.3)

Now
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lim
b→∞

[
t
e−st

−s

]b

0

=
1
−s

lim
b→∞

{
be−sb − 0

}
=

1
−s

lim
b→∞

b

esb
(
∞
∞

form)

=
1
−s

lim
b→∞

1
sesb

, treating b as variable,

s as constant and applying L′Hospital Rule

= 0, for s > 0 since lim
b→∞

e−sb = 0

Also, by part (b) above

lim
b→∞

∫ b

0
e−stdt =

∫ ∞

0
e−stdt =

1
s

for s > 0.

Substituting these values in (17.3), we obtain

L(t) = 0− 1
−s

× 1
s

=
1
s2
, if s > 0.

(d)

L[eat] =
∫ ∞

0
e−steatdt

=
∫ ∞

0
e−(s−a)tdt

= lim
b→∞

∫ b

0
e−(s−a)tdt
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= lim
b→∞

[
e−(s−a)t

−(s− a)

]b

0

=
1

s− a
, if s− a > 0,

since then lim
b→∞

e−(s−a)b = 0

(e)

L[e−at] =
∫ ∞

0
e−ste−atdt

=
∫ ∞

0
e−(s+a)tdt = lim

b→∞

∫ b

0
e−(s+a)tdt

= lim
b→∞

[
e−(s+a)t

−(s+ a)

]b

0

=
1

s+ a
, if s+ a > 0, since then lim

b→∞
e−(s+a)b = 0.

Aliter: (e) can also be obtained from (d) directly by replacing a

by −a.

(f)

L[eiat] =
∫ ∞

0
e−steiatdt =

∫ ∞

0
e−(s−ia)tdt

= lim
b→∞

∫ b

0
e−(s−ia)tdt = lim

b→∞

[
e−(s−ia)t

−(s− ia)

]b

0
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=
1

−(s− ia)
lim

b→∞

[
e−stei at

]b
0

=
1

−(s− ia)
lim

b→∞

(
e−sbei ab − 1

)
=

1
−(s− ia)

(
lim

b→∞
e−sb lim

b→∞
ei ab − 1

)
=

1
−(s− ia)

(0 − 1), since lim
b→∞

e−sb = 0

=
1

s− ia
, if s > 0.

Example 2 When n is a positive integer, find a reduction formula

for L[tn]and hence evaluate L[tn].

Solution

By the definition of Laplace transformation,

L[tn] =
∫ ∞

0
e−sttndt =

∫ ∞

0
tne−stdt = lim

b→∞

∫ b

0
tne−stdt. (17.4)

Now take u = tn, v′ = e−st in the integration by parts formula∫
uv′ = uv −

∫
u′v

and obtain∫ b

0
tne−stdt =

[
tne−st

−s

]b

0

−
∫ b

0
ntn−1 e

−st

−s
dt.
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Hence

lim
b→∞

∫ b

0
tne−stdt =

1
−s

lim
b→∞

[
tne−st

]b
0
+
n

s
lim

b→∞

∫ b

0
tn−1e−stdt

(17.5)

Now

lim
b→∞

[
tne−st

]b
0

= lim
b→∞

bne−sb

= lim
b→∞

bn

esb
(
∞
∞

form)

L= lim
b→∞

n bn−1

s esb
, treating b as variable, s as constant

and applying L′Hopital′s Rule

=
n

s
lim

b→∞

bn−1

esb
( again in

∞
∞

form)

L=
n

s
lim

b→∞

(n− 1) bn−2

s esb
( again in

∞
∞

form)

L=
n(n− 1)

s2
lim

b→∞

(n− 2) bn−3

s esb
(again in

∞
∞

form )

...
L=
n!
sn

lim
b→∞

1
esb

= 0.

Substituting this in (17.5) and noting that

lim
b→∞

∫ b

0
tn−1e−stdt =

∫ ∞

0
tn−1e−stdt = L[tn−1],

we obtain that
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L[tn] = n
s L[tn−1] , if s > 0.

Hence the required reduction formula is

L[tn] =
n

s
L[tn−1] (17.6)

Evaluation of L[tn ]:

L[tn] =
n

s
L[tn−1]

= n
s ·

n−1
s L[tn−2], using the reduction

formula (17.6) with n replaced by n− 1

=
n

s
· n− 1

s
· n− 2

s
L[tn−3]

. . . . . . . . .

=
n

s
· n− 1

s
· n− 2

s
· . . . · 2

s
· 1
s
L[t0]

=
n

s
· n− 1

s
· n− 2

s
· . . . · 2

s
· 1
s
· 1
s
,

since L[t0] = L[1] = 1
s

=
n (n− 1) (n− 2) · . . . · 2 · 1

sn+1

=
n!
sn+1

Example 3 Using the definition of Laplace transformation prove
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that

L[ta] =
Γ(a+ 1)
sa+1

,

for any positive number a (need not be positive integer). Hence

deduce that

L[ta] =
a !
sa+1

,

when a is a positive integer.

Note Γ seen above is the gamma function defined for a > 0 by

Γ(a) =
∫ ∞

0
e−xxa−1dx , where a > 0

Solution

By the definition of Laplace transformation we have

L[ta] =
∫ ∞

0
e−sttadt.

Now, let st = x, so that t = x
s and dt = dx

s . Also, when t = 0, x =

0 and when t = ∞, x = ∞. Hence, if s > 0, we have

L[ta] =
∫ ∞

0
e−sttadt =

∫ ∞

0
e−x

(x
s

)a dx

s

=
1

sa+1

∫ ∞

0
e−xxadx =

Γ (a+ 1)
sa+1

.

i.e., L[ta] = Γ(a+1)
sa+1 , if s > 0.

When a is a positive integer, Γ(a+ 1) = a!.

Hence in that case L[ta] = a!
sa+1
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Theorem 1 (Linearity of the Laplace Transformation)

The Laplace transformation is a linear transformation.

i.e. if a and b are any two constants and f (t) and g (t) are

functions with Laplace transforms F (s) and G (s) respectively,

then

L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)] = aF (s) + bG(s)

In particular, if k is a constant, L[kf(t)] = kL[f(t)] = kF (s).

Proof By the definition

L[af(t) + bg(t)] =
∫ ∞

0
e−st[af(t) + bg(t)]dt

= a

∫ ∞

0
e−stf(t)dt+ b

∫ ∞

0
e−stg(t)dt

= aL[f(t)] + bL[g(t)]

= aF (s) + bG(s).

Example 4 Find the Laplace transform of

(a) cos at (b) sin at

Solution

Recall the Euler formula eiθ = cos θ + i sin θ. Putting θ = at,

we obtain

eiat = cos at+ i sin at

Hence by the Linearity of the Laplace transformation (Theorem
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1), we have

L[eiat] = L[cos at] + i L[sin at] (17.7)

We also know that

L
[
eiat
]

=
1

s− ia
=

s+ ia

(s− ia)(s+ ia)
=

s

s2 + a2
+ i

a

s2 + a2
(17.8)

Equating the real and imaginary parts of (17.7) and (17.8), we

obtain

L [cos at] = s
s2+a2 and L [ sin at] = a

s2+a2 .

Aliter: The Laplace transform of cos at and sin at can be obtained

directly from the definition of Laplace transform as follows:

By the definition, L(cos at) =
∫∞
0 e−st cos atdt.

Take I =
∫∞
0 e−st cos atdt

Then

I =
∫ ∞

0
e−st cos at dt = lim

A→∞

∫ A

0
e−st cos at dt

= lim
A→∞

{[
e−st sin at

a

]A

0

−
∫ A

0
(−s) e−st sin at

a
dt

}

= lim
A→∞

s
a

∫ A
0 e−st sin atdt, if s > 0 [Here we have used the fact

that, since −1 ≤ sin aA ≤ 1 ⇒ −e−sA ≤ e−sA sin aA ≤ e−sA and

lim
A→∞

e−sA = 0, by the Sandwich Theorem, lim
A→∞

e−sA sin aA = 0
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and hence lim
A→∞

e−sA sin aA
a = 0]

= lim
A→∞

s

a

{[
e−st

(
− cos at

a

)]A

0

−
∫ A

0
(−s) e−st

(
− cos at

a

)
dt

}

=
s

a

{
1
a

+
s

a

∫ ∞

0
e−st cos at dt

}
= s

a

{
1
a + s

aI
}

= s
a2 − s2

a2 I, if s > 0.

...
(
1 + s2

a2

)
I = s

a2 , if s > 0.

i.e., I = s
s2+a2 , if s > 0.

i.e., L(cos at) = s
s2+a2 , if s > 0.

Proceeding similarly, it can be seen that

L(sin at) = a
s2+a2 , if s > 0.

Example 5 Find the Laplace transform of

1. cosh at 2. sinh at

Solution

1. L[coshat] = L
[
1
2
(
eat + e−at

)]
=

1
2
L
[
eat
]
+

1
2
L
[
e−at

]
,

by the linearity of the Laplace transformation

=
1
2

[
1

s− a

]
+

1
2

[
1

s+ a

]
=

1
2

[
s+ a+ s− a

s2 − a2

]
=

s

s2 − a2
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2. Since sinh at = eat−e−at

2 , we have

L[sinhat] = L
[
1
2
(
eat − e−at

)]
=

1
2
L
[
eat
]
− 1

2
L
[
e−at

]
,

by the linearity of the Laplace transformation

=
1
2

[
1

s− a

]
− 1

2

[
1

s+ a

]
=

1
2

[
s+ a− s+ a

s2 − a2

]
=

a

s2 − a2
.

Theorem 2 (Existence theorem for Laplace transforms)

Suppose that

(i). f(t) is piecewise continuous on the finite interval 0 ≤ t ≤ A

for any positive A.

(ii). there exist real constants K, a, and M, with K and M pos-

itive, such that

|f(t)| ≤ Keat when t ≥M.

Then the Laplace transform of f(t) exists for all s > a.

Proof We have to show that
∫∞
0 e−stf(t) dt converges for s > a.

∫ ∞

0
e−stf(t) dt =

∫ M

0
e−stf(t) dt+

∫ ∞

M
e−stf(t) dt. (17.9)

The first integral on the right side of Eq. (17.9) exists since f is

piecewise continuous on the interval 0 ≤ t ≤ A for any positive A

(and in particular for the interval 0 ≤ t ≤M).
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Also, for t ≥M ,

∣∣e−stf(t)
∣∣ ≤ ∣∣e−st

∣∣ |f(t)| = e−st |f(t)|

≤ K · e−st · eat = Ke(a−s)t

Hence, by Theorem A,
∫∞
M e−stf(t) dt converges provided

∫∞
M e(a−s)t dt

converges. Now, we have∫ ∞

M
e(a−s)t dt = lim

A→∞

∫ A

M
e(a−s)tdt

= lim
A→∞

[
e(a−s)t

a− s

]A

M

= lim
A→∞

[
e(a−s)A − e(a−s)M

a− s

]

Since e(a−s)A → 0 as A → ∞ only when a − s < 0, the above

implies
∫∞
M e(a−s)t dt = − e(a−s)M

a−s , if a− s < 0.

Hence
∫∞
M e(a−s)tdt converges; hence

∫∞
M e−stf(t) dt converges if

a− s < 0.

Hence the proof of the theorem.

Remark The conditions in the theorem are not necessary, as the

example f(t) = t−1/2 shows. This function has an infinite discon-

tinuity at t = 0, so it is not piecewise continuous, but its integral

from 0 to b exists; and since it is bounded for large t, its Laplace
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transform exists. Indeed, for s > 0 we have

L [t−1/2] =
∫ ∞

0
e−stt−1/2 dt,

and the change of variable st = u gives

L [t−1/2] = s−1/2

∫ ∞

0
e−u u−1/2 du.

Another change of variable, u = w2, leads to

L[t−1/2] = 2s−1/2

∫ ∞

0
e−w2

dw.

Noting that
∫∞
0 e−w2

dw =
√
π/2, the above gives

L[t−1/2] =
√
π

s
.

Example 6 Show that
∫∞
0 e−w2

dw =
√
π/2.

Solution

Take I =
∫∞
0 e−w2

dw. Then w being a dummy variable, we

can write

I2 =
(∫ ∞

0
e−x2

dx

)(∫ ∞

0
e−y2

dy

)
=
∫ ∞

0

∫ ∞

0
e−(x2+y2) dx dy.

The evaluation of the double integral is possible by changing to

polar coordinates [x2 + y2 = r2, dx dy = r dr dθ,0 ≤ r < ∞,
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0 ≤ θ < 2π], and hence we obtain

I2 =
π

2
.

Hence ∫ ∞

0
e−w2

dw = I =
√
π

2
.

Exercises

Find the Laplace transform of the following functions

1. 1− e−t

2. cosh 2t− 1

3. 2e−at − 1

4. 1 + t− cos t+ sin t

5. 1−cos 2t
4

6. cosh 2t− 1

7. sinh 2t− t

8. 1
4 (1− 2t+ sin 2t− cos 2t)

9. e2t−1−2t−2t2

8

10. t2−2πt−2+2eπ t

2π2

11. t3

6π2 − t
π4 + sin π t

π5

Answers

1. 1
s2+s

2. 4
s3−4s

3. 1
s

(
s−a
s+a

)
4. 2s2+s+1

s2(s2+1)

5. 1
s3+4s

6. 1
s2

(
s−a
s+a

)
7. 8

s4−4s2

8. 1
s2

(
s−2
s2+4

)
9. 1

s4−2s3

10. s−π+π2s
π2s3(s−π)
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11. 1
s4(s2+π2)

17.3 Inverse Laplace transform

Definition If L[f(t)] =F (s), then f(t) is called an inverse Laplace

transform of F (s). Symbolically,

f(t) = L −1[F (s)].

In other words, the inverse transform of a given function F (s) is

that function f(t) whose Laplace transform is F (s).

For example, L −1
[

1
s−a

]
= eat, since L[eat] = 1

s−a .

Theorem 3(Linearity of the Inverse Laplace Transforma-

tion)

If a and b are any constants F (s) and G(s) are functions with

inverse Laplace transforms f(t) and g(t) respectively, then

L−1[aF (s) + bG(s)] = aL−1[F (s)] + bL−1[G(s)] = af(t) + bg(t).

Example 7 Find the inverse Laplace transform of:

1. 5
s+3

2. . 2π
s+π

3. 1
s2+25

4. 12
s2+16

5. s
s2+25

6. 1
s4

7. 1
s2+81

8. 13
s2+25

9. s
s2+36

10. 1
s5

11. 2
s2+42
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Solution

1. L−1[ 5
s+3 ] = 5L−1[ 1

s+3 ], by the Linearity of the inverse Laplace

transformation

= 5e−3t, since L
(
e−3t

)
= 1

s+3

2. L−1[ 2π
s+π ] = 2πL−1[ 1

s+π ] = 2πe−πt,

3. L−1[ 1
s2+25

] = 1
5L−1[ 5

s2+25
] = 1

5 sin 5t

4. L−1[ 12
s2+16

] = 3L−1[ 4
s2+42 ] = 3 sin 4t

5. L−1[ s
s2+25

] = L−1[ s
s2+52 ] = cos 5t

6. L−1[ 1
s4 ] = t3

3! = t3

6 , since L
[
t3
]

= 3!
s4

7. L−1[ 1
s2+81

] = 1
9L−1[ 9

s2+92 ] = 1
9 sin 9t

8. L−1[ 13
s2+25

] = 13
5 L−1[ 5

s2+52 ] = 13
5 sin 5t

9. L−1[ s
s2+36

] = L−1[ s
s2+62 ] = cos 6t

10. L−1[ 1
s5 ] = t4

4! , since L
[
t4
]

= 4!
s5 = t4

24

11. L−1[ 2
s2+42 ] = 1

2L−1[ 4
s2+42 ] = 1

2 sin 4t

Example 8 Find the inverse Laplace transform of:

1. s+1
s2+1

2. 5s
s2+36

3. a1
s + a2

s2 + a3
s3

4. b1
s + b2

s2 + b3
s3 + b4

s4

Solution
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1. L−1
[

s+1
s2+1

]
= L−1

[
s

s2+1

]
+L−1

[
1

s2+1

]
, using the linearity of

the inverse Laplace transformation with F (s) = s
s2+1

, G (s) =
1

s2+1

= cos t+ sin t

2. L−1[ 5s
s2+36

] = 5L−1[ s
s2+62 ] = 5 cos 6t

3. L−1[a1
s + a2

s2 + a3
s3 ] = a1L−1[1s ] + a2L−1[ 1

s2 ] + a3L−1[ 1
s3 ]

= a1 · 1 + a2t+ a3
t2

2!
= a1 + a2t+ a3

t2

2
.

4. L−1
[

b1
s + b2

s2 + b3
s3 + b4

s4

]
= b1L−1

[
1
s

]
+ b2L−1

[
1
s2

]
+b3L−1

[
1
s3

]
+ b4L−1

[
1
s4

]

= b1 + b2t+
t2

2!
b3 +

t3

3!
b4

Method of Partial Fractions

We illustrate the method of partial fraction for finding inverse

Laplace transform through examples.

Case1. Unrepeated Factor s − a

Example 9 Find the inverse transform of s+1
s(s2+s−6)

Solution

Take F (s) = s+1
s(s−2)(s+3) = A1

s + A2
s−2 + A3

s+3 .

Determination of A1, A2, and A3:
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Multiplication by the common denominator s(s− 2) (s+ 3) gives

s+ 1 = (s− 2)(s+ 3)A1 + s(s+ 3)A2 + s(s− 2)A3.

Taking s = 0, s = 2, s = −3, we obtain, respectively,

1 = −2 · 3A1; 3 = 2 · 5A2;−2 = −3(−5)A3.

Hence A1 = −1/6, A2 = 3/10, and A3 = −2/15. Therefore,

y(t) = L−1[F (s)] = −1
6

+
3
10
e2t − 2

15
e−3t.

Example 10 Find the inverse transform of 1
s(s+1)(s+2)

Solution

Let
1

s(s+ 1)(s+ 2)
=
A

s
+

B

s+ 1
+

C

s+ 2

which implies

1 = A(s+1) (s+2) + Bs(s+2) + Cs(s+1).

Putting s = 0, we get A= 1
2 , putting s = -1, we get B = -1 and

by putting s = -2, we get C= 1
2 .

L−1(
1

s(s+ 1)(s+ 2)
) = L−1(

1/2
s
− 1

(s+ 1)
+

1/2
(s+ 2)

)

=
1
2
L−1(

1
s
)− L−1(

1
s+ 1

) +
1
2
L−1(

1
s+ 2

)

=
1
2
− e−t +

1
2
e−2t



17.3. INVERSE LAPLACE TRANSFORM 291

Case2. Repeated Factor (s− a)m

We recall that repeated factors(s−a)2, (s−a)3, etc., require partial

fractions
A2

(s−a)2
+ A1

s−a ,
A3

(s−a)3
+ A2

(s−a)2
+ A1

s−a , etc

respectively.

Example 11 Find the inverse transform of s3−4s2+4
s2(s2−3s+2)

.

Solution

Take F (s) = s3−4s2+4
s2(s2−3s+2)

.

It can be written as

F (s) =
s3 − 4s2 + 4

s2(s− 2)(s− 1)
=
A2

s2
+
A1

s
+

B

s− 2
+

C

s− 1

Multiplication with s2(s− 2)(s− 1) gives

s3 − 4s2 + 4 = A2(s− 2)(s− 1) +A1s(s− 2)(s− 1)

+Bs2(s− 1) + Cs2(s− 2) (17.10)

For s = 1 this is 1 = C(−1), hence C = −1.

For s = 2 it is −4 = 4B, hence B = −1.

For s = 0 we get 4 = 2A2, hence A2 = 2.

Differentiation of (17.10) gives

3s2 − 8s = A2(2s− 3) +A1(s− 2)(s− 1)

+ further terms all containing a factor s.

For s = 0 this is 0 = −3A2 + 2A1. Hence A1 = 3A2/2 = 3.
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Hence

y(t) = L−1[F (s)] = L−1

{
2
s2

+
3
s
− 1
s− 2

− 1
s− 1

}
= 2t+ 3− e2t − et.

Case 3. Unrepeated Complex Factors (s− a)(s− ā )

If s − a with complex a = α + iβ is a factor of G(s), so is s − ā

with ā = α− iβ the conjugate. To (s− a)(s− ā) = (s− α)2 + β2

there corresponds the partial fraction
As+B

(s−a)(s−ā) or As+B
(s−α)2+β2

We encounter such a situation in the next example.

Example 12 Find L−1
[

3s+1
(s−1)(s2+1)

]
.

Solution
3s+ 1

(s− 1)(s2 + 1)
=

A

s− 1
+
Bs+ C

s2 + 1

implies

3s+ 1 = A(s2 + 1) + (Bs+ C)(s− 1).

Putting s = 1, we get A = 2, putting s = 0, we get A − C = 1

implies C = 1. Comparing coefficients of s2 we get A + B = 0 or

B = −A = −2. Hence

3s+ 1
(s− 1)(s2 + 1)

=
2

s− 1
+
−2s+ 1
s2 + 1

and

L−1(
3s+ 1

(s− 1)(s2 + 1)
) = L−1(

2
s− 1

+
−2s+ 1
s2 + 1

)
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= 2L−1(
1

s− 1
)−2L−1(

s

s2 + 1
)+L−1(

1
s2 + 1

) = 2et−2 cos t+sin t

Example 13 Find the inverse transform of 1
s2

(
s+1
s2+a

)
.

Solution
1
s2

(
s+ 1
s2 + a

)
=
As+B

s2
+
Cs+D

s2 + a

(OR can be written as 1
s2

(
s+1
s2+a

)
= A

s + B
s2 + Cs+D

s2+a
).

This implies

s+ 1 = (As+B)(s2 + a) + (Cs+D)s2.

Putting s = 0, we get 1 = Ba, hence B = 1
a .

Equating like powers of s, we obtain

A+ C = 0, B +D = 0, Aa = 1,

and hence

A =
1
a
,D = −B = −1

a
,C = −A = −1

a
.

Hence
1
s2

(
s+ 1
s2 + a

)
=

1
a

(
s+ 1
s2

− s+ 1

s2 + (
√
a)2

)
and

L−1

[
1
s2

(
s+ 1
s2 + a

)]
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=
1
a

{
L−1

[
1
s

]
+ L−1

[
1
s2

]
− L−1

[
s

s2 + (
√
a)2

]
− L−1

[
1

s2 + (
√
a)2

]}

=
1
a

(
1 + t− cos

√
a t− sin

√
a t√
a

)
.

*Case 4. Repeated Complex Factors [(s− a)(s− ā)]2

In this case the partial fractions are of the form

As+B

[(s− a)(s− ā)]2
+

Ms+N

(s− a)(s− ā)
.

A problem of this type will be discussed in a coming chapter.

Exercises

In Exercises 1-18, find f(t) if L[f(t)] is:

1. 1
s2+s

2. 1
(s−a)(s−b) (a 6= b)

3. 4
(s+1)(s+2)

4. 9
s2+3s

5. 4
s3−4s

6. 1
s2+s

7. 1
s2+4s

8. 8
s4−4s2

9. 1
s2

(
s−2
s2+4

)

10. 3s+16
s2−s−6

11. s−a
s2(s+a)

12. 1
s

(
s−a
s+a

)
13. 1

s3+4s

14. 1
s2

(
s−a
s+a

)
15. 1

s4−2s3

16. 2s−π
s3(s−π)

17. 1
s4(s2+π2)

18. 3s+7
s2−2s−3
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19. F (s) = 5
s2+4

20. F (s) = 2
s2+3s−4

21. F (s) = 2s−3
s2−4

22. F (s) = 2s+1
s2−2s+2

23. F (s) = 3−4s
s2+4s+5

24. (Finding Laplace transforms of certain functions using their

Taylor series expansions)

(a) Using the Taylor series for sin t

sin t =
∞∑

n=0

(−1)nt2n+1

(2n+ 1)!

and assuming that the Laplace transform of this series can

be computed term by term, verify that

L{sin t} =
1

s2 + 1
, s > 1.

(b) Let

f(t) =

{
(sin t)/t t 6= 0,

1, t = 0.

Find the Taylor series for f about t = 0. Assuming that the

Laplace transform of this function can be computed term by

term, verify that

L{f(t)} = arctan(1/s), s > 1.

Hint to Exercise 17: 1
s4(s2+π2)

= As3+Bs2+Cs+D
s4 + Es+F

s2+π2
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Equating like powers of s and simplifying, we get

A = C = E = 0, B = − 1
π4
, D =

1
π2
, F =

1
π4
.

Hint to Exercise 18: s2 − 2s− 3 = (s− 3)(s+ 1)

Answers

1. 1− e−t

2. eat−ebt

a−b (a 6= b)

3. 4
(
e−t − e−2t

)
4. 3

(
1− e−3t

)
5. cosh 2t− 1 or 1

2e
2t + 1

2e
−2t − 1.

6. 1− e−t

7. 1
4

(
1− e−4t

)
8. sinh 2t− 2t

9. 1
4 (1− 2t+ sin 2t− cos 2t)

10. 5e3t − 2e−2t

11. 2
a −

2
ae

−at − t

12. 2e−at − 1

13. 1−cos 2t
4

14. 2(1−e−at)−at
a

15. e2t−1−2t−2t2

8

16. t2−2πt−2+2eπ t

2π2

17. t3

6π2 − t
π4 + sin π t

π5

18. 4e3t − e−t

19. f(t) = 5
2 sin 2t

20. f(t) = 2
5e

t − 2
5e

−4t

21. f(t) = 2 cosh 2t− 3
2 sinh 2t

22. f(t) = 2et cos t+ 3et sin t

23. f(t) = −4e−2t cos t +

11e−2t sin t



Chapter 18
Transform of Derivatives and

Integrals

18.1 Solution of Initial Value Problems

The Laplace transform is a method of solving differential equa-

tions. The crucial idea is that the Laplace transform replaces

operations of calculus by operations of algebra on transforms. We

will see that differentiation of f(t) is replaced by multiplication of

L(s) by s. Integration of f(t) is replaced by division of L[f(t)] by

s.

18.1.1 Laplace Transforms of Derivatives

Theorem 1 (Differentiation of f(t))

297
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Suppose that f is continuous and f ′ is piecewise continuous on

any interval 0 ≤ t ≤ A. suppose further that there exist constants

K, a, and M such that

|f(t)| ≤ Keat for t ≥M.

Then L[f ′(t)] exists for s > a, and

L[f ′(t)] = sL[f(t)] − f(0). (18.1)

Proof We have to show
∫∞
0 e−stf ′(t) dt is convergent. For this we

consider the integral
∫ A
0 e−stf ′(t) dt.

If f ′ has points of discontinuity in the interval 0 ≤ t ≤ A, let

them be denoted by t1, t2, · · · , tn.

Then∫ A

0
e−stf ′(t) dt =

∫ t1

0
e−stf ′(t) dt+

∫ t2

t1

e−stf ′(t) dt+···+
∫ A

tn

e−stf ′(t) dt.

Integrating each term on the right by parts, we obtain∫ A

0
e−stf ′(t) dt =

[
e−stf(t)

]t1
0

+
[
e−stf(t)

]t1
0

[+
[
e−stf(t)

]t2
t1

+ · · ·+
[
e−stf(t)

]A
tn

[+s
[∫ t1

0
e−stf(t) dt+

∫ t2

t1

e−stf(t) dt
]
.

+ · · ·+
∫ A

tn

e−stf(t) dt
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Since f is continuous, the contributions of the integrand terms at

t1, t2, · · ·, tn cancel. Combining the integrals, we obtain∫ A

0
e−stf ′(t) dt = e−sAf(A)− f(0) + s

∫ A

0
e−stf(t) dt.

For A ≥M, we have |f(A)| ≤ KeaA. Hence,

|e−sAf(A)| ≤ Ke−(s−a)A

Hence e−sAf(A) → 0 as A → ∞ whenever s > a. Therefore, for

s > a,

L[f ′(t)] =
∫ ∞

0
e−stf ′(t) dt = sL[f(t)]− f(0).

This completes the proof of the theorem.

Corollary to Theorem 1:

L
[
f ′′(t)

]
= s2L [f(t)]− sf(0)− f ′(0). (18.2)

Proof Applying (18.1) tof ′′(t), we get

L[f ′′(t)] = sL[f ′(t)] − f ′(0) = s [sL[f(t)]− f(0)]− f ′(0).

That is,

L
[
f ′′(t)

]
= s2L [f(t)]− sf(0)− f ′(0).

This completes the proof.
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Proceeding similarly as in the Corollary above, we obtain

L
[
f ′′′(t)

]
= s3L [f(t)]− s2f(0)− sf ′(0) − f ′′(0). (18.3)

By induction, we obtain the following extension of the above the-

orem.

Theorem 2 (Derivative of any order n)

L
[
f (n)(t)

]
= snL [f(t)]−sn−1f(0)−sn−2f ′(0)− · · · −f (n−1)(0).

Example 1 Iff(t) = t sin at, find L[f(t)].

Solution

f(t) = t sin at, so f(0) = 0, f ′(t) = sin at+at cos at, f ′(0) = 0

f ′′(t) = a cos at+ a cos at− a2t sin at = 2a cos at− a2f(t)

Substituting these values in

L
[
f ′′(t)

]
= s2L [f(t)]− sf(0)− f ′(0)

we obtain

L[2a cos at− a2f(t))] = s2L[f(t)]− s · 0− 0

implies (using Linearity of Laplace transformation to the left hand

side)

2aL[ cos at]− a2L[f(t)] = s2L[f(t)]
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Bringing L[f(t)] to the right hand side, the above becomes

(s2 + a2)L[f(t)] = 2aL[ cos at]

Noting that L[ cos at] = s
s2+a2 , the above implies

(s2 + a2)L[f(t)] =
2as

s2 + a2

or

L[t sin at] = L[f(t)] =
2as

(s2 + a2)2
.

Example 2 Iff(t) = t cos at, find L[f(t)].

Solution

If we proceed as in Example 2, we obtain

L[t cos at] =
s2 − a2

(s2 + a2)2

Table: Some functions f(t) and their placeLaplace transforms

f(t) L[f(t)]

1 t cos at s2−a2

(s2+a2)2

2 tsinat 2as
(s2+a2)2

Example 3 Find the inverse transform of 1
(s2+a2)2

.
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Solution

1
(s2 + a2)2

=
1

2a2
{(s2 + a2)− (s2 − a2)

(s2 + a2)2
}

=
1

2a2

{
1

s2 + a2
− (s2 − a2)

(s2 + a2)2

}
.

Hence,

L−1

[
1

(s2 + a2)2

]
=

1
2a2

L−1

[
1

s2 + a2

]
− 1

2a2
L−1

[
s2 − a2

(s2 + a2)2

]
,

by the Linearity Theorem of

inverse Laplace transform

=
1

2a2

1
a

sin at− 1
2a2

t cos at

=
1

2a3
{sin at− at cos at}

Example 4 Find the inverse transform of s3

(s2+a2)2
.

Solution

s3

(s2 + a2)2
=
s[(s2 + a2)− a2]

(s2 + a2)2
=

s

s2 + a2
− a2s

(s2 + a2)2

L−1

[
s3

(s2 + a2)2

]
= L−1

[
s

s2 + a2

]
− a2L−1

[
s

(s2 + a2)2

]
= cos at− a2 1

2a
t sin at = cos at− at

2
sin at

Exercises

In Exercises 1 and 2, prove using differentiation theorem.
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1. L(t cosh at) = s2+a2

(s2−a2)2

2. L(t sinh at) = 2as
(s2−a2)2

18.1.2 Solution of Initial Value Problems

The Laplace transform is useful in solving initial value problems.

Suppose we have to solve the second order linear differential equa-

tion
d2y

dt2
+ α

dy

dt
+ βy = f(t) (18.4)

where α and β are constants, subject to the initial condition

y(0) = A, and y′(0) = B, where A and B are given constants.

Taking Laplace transform of both sides of equation (18.4) and

using the given initial conditions, we obtain an algebraic equation

for the determination of L [y(t)] = Y (s). The required solution

y(t) is then obtained by finding the inverse Laplace transform of

Y (s). The method can be extended to higher order differential

equations.

Notation

Suppose we denoteL [y(t)] = Y (s). Then we have

L
[
y′(t)

]
= sY (s)− y(0).

L
[
y′′(t)

]
= s2Y (s)− sy(0)− y′(0)

L
[
y′′′(t)

]
= s3Y (s)− s2y(0)− sy′(0)− y′′(0) and so on.
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Example 5 Using Laplace transform, find the solution of

y′′ + 4y = 4t (18.5)

that satisfies the initial conditions y(0) = 1 and y′(0) = 5. Verify

the same using another method.

Solution

When L is applies to both sides of (18.5), we get

L[y′′] + 4L[y] = 4L[t]. (18.6)

Using Theorem and noting that L(t) = 1/s2, (18.6) becomes

s2 L[y]− s− 5 + 4L[y] =
4
s2

or

(s2 + 4)L[y] = s+ 5 +
4
s2
,

so

L [y] =
s

s2 + 4
+

5
s2 + 4

+
4

s2(s2 + 4)

=
s

s2 + 4
+

5
s2 + 4

+
1
s2
− 1
s2 + 4

=
s

s2 + 4
+

4
s2 + 4

+
1
s2

(18.7)

i.e.,

L [y] = L [cos 2t] + L [2 sin 2t] + L [t]
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= L [cos 2t+ 2 sin 2t+ t].

so

y = cos 2t+ 2 sin 2t+ t

is the desired solution.

We can easily check this result, for the general solution of

(18.5) is seen by inspection to be

y = c1 cos 2t+ c2 sin 2t+ t,

and the initial conditions imply at once that c1 = 1 and c2 = 2.

Example 6 Solve the following initial value problem:

y′′ + y = sin 2t, (18.8)

with

y(0) = 2, y′(0) = 1 (18.9)

Solution

Taking the Laplace transform of the differential equation, we

have

s2Y (s)− sy(0)− y′(0) + Y (s) =
2

s2 + 4
.

Substituting for y(0) and y′(0)from the initial conditions and solv-

ing for Y (s), we obtain

Y (s) =
2s3 + s2 + 8s+ 6
(s2 + 1)(s2 + 4)

(18.10)
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Using partial fractions, we can write Y (s)in the form

Y (s) =
as+ b

s2 + 1
+
cs+ d

s2 + 4
=

(as+ b)(s2 + 4) + (cs+ d)(s2 + 1)
(s2 + 1)(s2 + 4)

(18.11)

By expanding the numerator on the right side of Eq.(18.11) and

equating it to the numerator in Eq.(18.10), we find that

2s3 + s2 + 8s+ 6 = (a+ c)s3 + b(+d)s2 + (4a+ c)s+ (4b+ d)

for all s. Then, comparing coefficients of like powers of s, we have

a+ c = 2, b+ d = 1,

4a+ c = 8, 4b+ d = 6.

Hence,

a = 2, c = 0, b = 5
3 and d = −2

3 ,

from which we obtain

Y (s) =
2s

s2 + 1
+

5/3
s2 + 1

− 2/3
s2 + 4

(18.12)

Hence

y(t) = L−1[Y (s)] = 2 cos t+
5
3

sin t− 1
3

sin 2t. (18.13)

Example 7 A small body of mass m = 2 is attached at the lower

end of an elastic spring whose upper end is fixed, the spring mod-

ulus being k = 10. Let y(t) be the displacement of the body from
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the position of static equilibrium. Determine the free vibrations of

the body, starting from the initial position y(0) = 2 with the ini-

tial velocity y′(0) = 4, assume that there is damping proportional

to the velocity, the damping constant being c = 4.

Solution

The differential equation governing the motion of the damped

mechanical system is

my′′ + cy′ + ky = 0.

Here using the given values, the differential equation is

2y′′ + 4y′ + 10y = 0

or

y′′ + 2y′ + 5y = 0.

Also the initial conditions are given by y(0) = 2 and y′(0) = 4.

i.e., we have solve the initial value problem

y′′ + 2y′ + 5y = 0; y(0) = 2 and y′(0) = 4.

Taking Laplace transform of both sides of the above differential

equation, we get

L(y′′) + 2L(y′) + 5L(y) = 0.

i.e., s2Y (s)− sy(0)− y′(0) + 2[sY (s)− y(0)] + 5Y (s) = 0,

where L [y(t)] = Y (s)
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i.e., s2Y (s)− s · 2− 4 + 2[sY (s)− 2] + 5Y (s) = 0

i.e., (s2 + 2s+ 5)Y (s)− 2s = 8 or Y (s) = 2s+8
s2+2s+5

.

Now

Y (s) =
2s

s2 + 2s+ 5
=

2s
(s+ 1)2 + 22

= 2· s+ 1
(s+ 1)2 + 22

+
3 · 2

(s+ 1)2 + 22

y(t) = L−1 [Y (s)] = 2L−1

[
s+ 1

(s+ 1)2 + 22

]
+ 3L−1

[
2

(s+ 1)2 + 22

]
= 2e−t cos 2t+ 3e−t sin 2t = e−t [2 cos 2t+ 3 sin 2t]

Example 8 Find the solution of the initial value problem

y(4) − y = 0 (18.14)

y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 0 (18.15)

Solution

The Laplace transform of the differential equation (18.14) is

s4Y (s)− s3y(0)− s2y′(0)− sy′′(0)− y′′′(0)− Y (s) = 0.

Then, using the initial conditions (18.15) and solving for Y (s), we

have

Y (s) =
s2

s4 − 1
(18.16)
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A partial fraction expansion of Y (s) is

Y (s) =
as+ b

s2 − 1
+
cs+ d

s2 + 1
(18.17)

and it follows that

(as+ b)(s2 + 1) + (cs+ d)(s2 − 1) = s2 (18.18)

for all s. By setting s = 1 and s = −1, respectively in Eq.(18.17),

we obtain the pair of equations

2(a+ b) = 1, 2(−a+ b) = 1,

and therefore a = 0 and b = 1
2 . If we set s = 0 in Eq.(18.18) then

b− d = 0, so d = 1
2 . Finally, equating the coefficients of the cubic

terms on each side of Eq.(18.18), we find that a+ c = 0, so c = 0.

Thus,

Y (s) =
1/2
s2 − 1

+
1/2
s2 + 1

. (18.19)

Hence

y(t) = L−1[Y (s)] =
sinh t+ sin t

2
. (18.20)

More initial value problems will be discussed in the coming

chapters related to Laplace transforms.

Exercises

In Exercises 1-9, solve the following initial value problems by the

Laplace transform.
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1. y′ + 3y = 10 sin t, y(0) = 0

2. y′ + 0.2y = 0.01t, y(0) = −0.25

3. y′′ + ay′ − 2a2y = 0y(0) = 6, y′(0) = 0

4. y′′ − 4y′ + 3y = 6t− 8, y(0) = 0, y′(0) = 0

5. y′′ + 2y′ − 3y = 6e−2t, y(0) = 2, y′(0) = −14

6. y′ − 5y = 1.5e−4t, y(0) = 1

7. y′′ − y′ − 2y = 0, y(0) = 8, y′(0) = 7

8. y′′ + y = 2 cos ty(0) = 3, y′(0) = 4

9. y′′ + 0.04y = 0.0t2y(0) = −25, y′(0) = 0

10. y′′ − y′ − 6y = 0; y(0) = 1, y′(0) = −1

11. y′′ + 3y′ + 2y = 0; y(0) = 1, y′(0) = 0

12. y′′ − 2y′ + 4y = 0; y(0) = 2, y′(0) = 0

13. y(4) − 4y′′′ + 6y′′ − 4y′ + y = 0; y(0) = 0, y′(0) = 1, y′′(0) =

0, y′′′(0) = 1

14. y(4)− y = 0; y(0) = 1, y′(0) = 0, y′′(0) = 1, y′′′(0) = 0

15. y′′ + 2y′ + y = 4e−t; y(0) = 2, y′(0) = −1

16. y′′ − 2y′ + 2y = cos t; y(0) = 1, y′(0) = 0

Answers
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1. y = e−3t − cos t+ 3 sin t

2. y = 0.05t− 0.25

3. y = 2e−2at + 4eat

4. y = 2t+ et − e3t

5. y = −2e−2t + 11
2 e

−3t − 3
2e

t

10. y = 1
5(e3t + 4e−2t)

11. .y = 2e−t − e−2t

12. y = 2et cos
√

3 t− (2/
√

3)et sin
√

3 t

13. y = tet − t2et + 2
3 t

3et

14. y = cosh t

15. y = 2e−t + te−t + 2t2e−t

16. y = 1
5(cos t− 2 sin t+ 4et cos t− 2et sin t)

18.2 Laplace Transform of the Integral of a

Function

Theorem 3 (Integration of f (t) )

L
[∫ t

0
f(u)du

]
=

1
s
L[f(t)]; (s > 0, s > γ).
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Proof Take

g(t) =
∫ t

0
f(u)du.

Then

f(t) = g′(t).

Hence, by Theorem 1,

L[f(t)] = L[g′(t)] = sL[g(t)]− g(0) (18.21)

Here, g(0) =
∫ 0
0 f(u)du = 0, (18.21) becomes

L[f(t)] = sL[g(t)],

which implies that

L[g(t)] =
1
s
L[f(t)]

or

L
[∫ t

0
f(u)du

]
=

1
s
L[f(t)].

Corollary to Theorem 3∫ t

0
f(u)du = L−1

[
1
s
F (s)

]
(18.22)

Proof This is obtained if we put L[f(t)] = F (s)in the above

result

Example 9 If L[f(t)] = 1
s2(s2+a2)

, find f(t).

Solution

We do the work in two steps:
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Step 1: Evaluation of L−1
[

1
s ·

1
s2+a2

]
.

By takingF (s) = 1
s2+a2 , and noting that

f(t) = L−1[F (s)] = L−1

[
1

s2 + a2

]
=

1
a

sin at,

(18.22) gives

L−1

[
1
s
· 1
s2 + a2

]
= L−1

[
1
s
F (s)

]
=
∫ t

0
f(u)du

=
∫ t

0

1
a

sin au du

=
1
a

[
− cos au

a

]t

0

=
1
a2

[1− cos at]

Step 2: Evaluation of L−1
[

1
s2 · 1

s2+a2

]
.

Now taking

F (s) =
1
s
· 1
s2 + a2

,

and noting from Step 1 that

f(t) = L−1[F (s)] = L−1

[
1
s
· 1
s2 + a2

]
=

1
a2

[1− cos at] ,
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(18.22) gives

L−1

[
1
s2
· 1
s2 + a2

]
= L−1

[
1
s
.

(
1
s
· 1
s2 + a2

)]
= L−1

[
1
s
F (s)

]
=
∫ t

0
f(u)du

=
∫ t

0

1
a2

[1− cos au] du

=
1
a2

[
u− sin au

a

]t

0

=
1
a2

[
t− sin at

a

]

Example 10 If L[f(t)] = s+1
s2(s2+1)

, find f(t).

Solution

We do the work in two steps:

Step 1: Evaluation of L−1
[

1
s ·

s+1
s2+1

]
: Take F (s) = s+1

s2+1
, then

f(t) = L−1 [F (s)]=L−1

[
s+ 1
s2 + 1

]
= L−1

[
s

s2 + 1

]
+ L−1

[
1

s2 + 1

]
= cos t+ sin t.
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Hence by (18.22),

L−1

[
1
s
· s+ 1
s2 + 1

]
= L−1

[
1
s
F (s)

]
=

∫ t

0
f(u)du =

∫ t

0
(cosu+ sinu)du

= [sinu− cosu]t0 = sin t− cos t+ 1.

Step 2: Evaluation of L−1
[

1
s2 · s+1

s2+a2

]
.

Now take

F (s) =
1
s
· s+ 1
s2 + 1

,

then by Step 1

f(t) = L−1 [F (s)] = sin t− cos t+ 1

and by (18.22),

L−1

[
1
s2
· s+ 1
s2 + 1

]
= L−1

[
1
s
.

(
1
s

1
s2 + a2

)]
= L−1

[
1
s
F (s)

]
=
∫ t

0
f(u)du

=
∫ t

0
(sinu− cosu+ 1)du

= 1− cos t− sin t+ t.

Exercises

Find inverse transforms by integration.
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1. 1
s2+4s

2. 1
s(s2+ω2)

3. 1
s3−s

4. 9
s2

(
s+1
s2+9

)
5. 4

s3+2s2

6. 1
s5+s3

7. 1
s2

(
s−1
s+1

)

8. π5

s4(s2+π2)

Answers

1. 1
4(1− e−4t)

2. (1− cosωt)/ω2

3. cosh t− 1

4. 1 + t− cos 3t− 1
3 sin 3t



Chapter 19
Unit Step Function and

Impulse Function

In this chapter we define two important functions, the unit step

function and Dirac’s delta function. We also state and prove shift-

ing theorems.

Unit Step Function

The unit step function or Heaviside function, denoted

by uc, is defined by

uc(t) =

{
0, if t < c

0, if t ≥ c
(c ≥ 0 is fixed)

317
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Figure 19.1:

Notation The unit step function uc(t) is sometimes denoted by

u(t− c).

Example 1 Given

h(t) = uπ(t)− u2π(t), t ≥ 0.

Give the explicit form of h(t).

Solution

Using the definition of uc(t), we have

h(t) =


0− 0 = 0, 0 ≤ t < π,

1− 0 = 1, π ≤ t < 2π,

1− 1 = 0, 2π ≤ t < −∞,
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Example 2 Express the function

f(t) =


2, 0 ≤ t < 4,

5, 4 ≤ t < 7,

−1, 7 ≤ t < 9,

1, t ≥ 9,

(19.1)

in terms of unit step functions.

Solution

We start with the function f1(t) = 2, which agrees with f(t)

on [0, 4). To produce the jump of three units at t = 4, we add

3u4(t) obtaining

f2(t) = 2 + 3u4(t),

which agrees with f(t) on [0, 7). The negative jump of six units

at t = 7 corresponds to adding −6u7(t), which gives

f3(t) = 2 + 3u4(t)− 6u7(t).

Finally, we must add 2u9(t) to match the jump of two units at

t = 9. Thus we obtain

f(t) = 2 + 3u4(t)− 6u7(t) + 2u9(t). (19.2)
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The Laplace Transform of uc

The Laplace transform of ucis determined as follows:

L[uc(t)] =
∫ ∞

0
e−stuc(t)dt =

∫ c

0
e−st0dt+

∫ ∞

c
e−stdt

=
[
e−st

s

]∞
c

=
e−cs

s
(s > 0).

For a given function f determined for t ≥ 0, we will often want to

consider the related function g defined by

y = g(t) =

{
0 when t < c,

f(t− c) when t ≥ c,

which represents a translation of f a distance c in the positive t

direction. In terms of the unit step function we can write g(t) in

the convenient form

g(t) = uc(t)f(t− c).

The unit step function is particularly important in transform use

because of the relation (in the following theorem) between the

transform of f(t) and that of its translation uc(t)f(t− c).

Theorem 1 (Shifting on the t-axis)

If F (s) = L[f(t)] exists for s > a ≥ 0, and if c is a positive

constant, then

L [uc(t)f(t− c)] = e−csL[f(t)] = e−csF (s), s > a. (19.3)
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Proof

L[uc(t)f(t− c)] =
∫ ∞

0
e−stuc(t)f(t− c)dt

=
∫ c

0
e−stuc(t)f(t− c)dt+

∫ ∞

c
e−stuc(t)f(t− c)dt

=
∫ ∞

c
e−stf(t− c)dt

=
∫ ∞

0
e−s(c+u)f(u)du, by putting t− c = u,

and noting u = 0, when t = c

= e−cs

∫ ∞

0
e−suf(u)du

= e−csL[f(u)] = e−csF (s)

Corollary 1 If f(t) = L
−1

[F (s)], then

L−1
[
e−csF (s)

]
= uc(t) f (t − c) (19.4)

Proof (19.4) is obtained if we apply inverse Laplace transforma-

tion on both sides of (19.3).

Example 3 Find L[f(t)], where

f(t) =

{
sin t, 0 ≤ t < π

4

sin t + cos (t− π
4 ), t ≥ π

4

Solution

Note that

f(t) = sin t+ g(t),



322 CHAPTER 19. UNIT STEP AND IMPULSE FUNCTIONS

where

g(t) =


0, t < π

4

cos (t− π
4 ), t ≥ π

4

= uπ
4
(t) cos (t− π

4 ).

Hence, by the linearity of Laplace transform,

L[f(t)] = L[sin t] + L[g(t)]

= L[sin t] + L[uπ
4
(t) cos(t− π

4 )]

= L[sin t] + e−
πs
4 L[cos t], using Theorem 1

=
1

s2 + 1
+e−

πs
4 · s

s2 + 1

=
1 + se−

πs
4

s2 + 1
.

Example 4 Find the inverse Laplace transform of 1−e−2s

s2 .

Solution

L−1

[
1− e−2s

s2

]
= L−1

[
1
s2

]
− L−1

[
e−2s

s2

]
= t− u2(t) (t− 2), since L−1

[
1
s2

]
= t

and using Corollary to Theorem 1

=


t, 0 ≤ t < 2

2, t ≥ 2
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Corollary 2

L[uc(t)] =
e−cs

s
, (s > 0). (19.5)

Proof

With f(t− c) = 1 for all t, Theorem 1 gives

L[uc(t) ] = e−cs · 1
s
,

since L[1] = 1
s

Example 5 Find the Laplace transform of the function

g(t) =


1, if 0<t<π

0, if π < t < 2π

sin t, if t>2π

Solution

We start with the function

f1(t) = 1,

which agrees with g(t) on 0 < t < π. The negative jump of one

units at t = π corresponds to adding −uπ(t), which gives

f2(t) = 1− uπ(t).

f2 agrees with g on 0 < t < 2π. At t = 2π we want sin t to come
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on, so we have to add u2π(t) sin t, which gives

g(t) = 1− uπ(t) + u2π(t) sin t.

Here sin t = sin(t − 2π), because of the periodicity. Hence the

above can be written as

g(t) = 1− uπ(t) + u2π(t) sin (t− 2π).

Hence,

L[g(t)] = L[1]− L[uπ(t)] + L [u2π(t) sin(t− 2π)]

Now

L[1] =
1
s
,

and ( by Corollary 2)

L[uπ(t)] =
e−πs

s
.

Taking f(t) = sin t, and noting L [sin t] = F (s) = 1
s2+1

, Theorem

1 gives

L[u2π(t) sin(t−2π) = L[u2π(t)f(t−2π)] = e−2πsF (s) = e−2πs 1
s2 + 1

.

Hence

L[g(t)] =
1
s
− e−πs

s
+
e−2πs

s2 + 1
.
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Example 6 Find the inverse transform of e−3s

s3 .

Solution

Taking F (s) = 1
s3 , we have f(t) = L−1

[
1
s3

]
= t2

2 , and hence

L−1

[
e−3s

s3

]
= u3(t)

(t− 3)2

2
, by Corollary 1

=

{
(t−3)2

2 if t ≥ 3

0 if t < 3

Example 7 Solve the initial value problem d2y
dt2

+2y = r(t), y(0) =

0, y′(0) = 0,

where

r(t) =

{
1 if t ≥ 1

0 if t < 1

Solution

Here note that r(t) is the step function u1(t). Now taking the

Laplace transform of both sides of the given differential equation,

we get

L(y′′) + 2L(y) = L (u1(t)) .

i.e., using (19.5),

s2Y (s)− sy(0)− y′(0) + 2Y (s) =
e−s

s
,

where L [y(t)] = Y (s)

i.e.,

(s2 + 2)Y (s) =
e−s

s
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or

Y (s) =
e−s

s(s2 + 2)
=
e−s

2

(
1
s
− s

s2 + 2

)
.

Now

L−1
[
e−s 1

s

]
= 1 · u(t− 1), using (19.3)

and

L−1
[
e−s s

s2+(
√

2)2

]
= cos(

√
2(t− 1))u(t− 1), using (19.3)

Hence

y(t) = L−1 [Y (s)]

=
1
2

[
1− cos

√
2(t− 1)

]
u(t− 1)

Exercises

In Exercises 1-13, solve the differential equation using Laplace

transform.

1. y′′ − 2y′ − 8y = 4, y(0) = 0, y′(0) = 1.

2. 4y′′ + y = 0, y(0) = 0, y′(0) = 2.

3. y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 2.

4. y′′ + 2y′ + 2y = 0, y(0) = 0, y′(0) = 1.

5. y′′ + 3y′ + 2y = e−t, y(0) = 0, y′(0) = 0.

6. y′′ + 4y = sin 2t, y(0) = 0, y′(0) = 0.

7. y′′ + 4y′ + 3y = 0, y(0) = 3, y′(0) = 1.

8. y′′ + 4y′ + 3y = e−t, y(0) = y′(0) = 1.
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9. d2x
dt2

− 2dx
dt + x = et; x = 2, dx

dt = −1 at t = 0.

10. d2y
dt2

+ 6dy
dt + 5y = e−2t; y = 0, dy

dt = 1 when t = 0

11. y′′ + 2y′ − 3y = 10 sinh 2t, y(0) = 0, y′(0) = 4.

12. y′′ + 6y′ + 9y = sinx, y(0) = 1, y′(0) = 0.

13. (D2 + 4D + 13)y = e−t sin t, y(0) = y′(0) = 1.

In Exercises 14-17, find the inverse Laplace transform of the

given function.

14. se−πs

s2+4

15. e−πs

s2+2s+2

16. e−2s s
s2+52 17.e−5s s

(s+3)2+1

Answers

1. y = 1
3e

4t + 1
6e

−2t − 1
2

2. y = 4 sin t
2

3. y = e−2t(cos t+ 4 sin t)

4. y = e−t sin t

5. y = te−t − e−t + e−2t

6. y = 1
8 (sin 2t− 2t cos 2t)

7. y = 5e−t − 2e−3t
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8. y = 1
4(7e−t + 2te−1 − 3e−3t)

9. et(2− 3t+ 3t2)10.16(3e−t − 2e−2t − e−5t)

10. y = e2t + 5
3e

−2t − 2e−3t − 2
3e

t

14. cos 2(t− π) if t > π and = 0 otherwise

16. cos 5(t− 2) if t ≥ 2 and = 0 otherwise

17. [cos(t− 5) − 3 sin(t− 5)] e−3(t−5) if t ≥ 5 and = 0 otherwise

19.1 Shifting on the s-axis [First Shifting

Theorem]

Theorem 4 (Shifting on the s-axis)

If F (s) = L[f(t)], where s > a ≥ 0 and if c is a constant, then

L[ectf(t)] = F (s− c), s > a+ c. (19.6)

Thus, replacing s by s − c in the transform (“shifting on the s-

axis”) corresponds to multiplying the original function by ect. (Ref.

Fig.)

Proof By definition

F (s) = L[f(t)] =
∫ ∞

0
e−stf(t)dt
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Figure 19.2:

Hence, with s− c in place of s, we have

F (s− c) =
∫ ∞

0
e−(s−c)tf(t)dt =

∫ ∞

0
e−st

[
ectf(t)

]
dt=L[ectf(t)].

This completes the proof.

The following result is an immediate consequence of the

theorem.

Corollary 1

L[e−ctf(t)] = F (s+ c)

Example 8 Find L
(
ecttn

)
(n = 1, 2, . . . )

Solution

Here take f(t) = tn, so F (s) = L [f(t)] = L [tn] = n !
sn+1

Hence

L
(
ecttn

)
= L[ectf(t)] = F (s− c) =

n !
(s− c)n+1 .

Example 9 Find L
(
ect cos bt

)
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Solution

If we takef(t) = cos bt, then

F (s) = L [f(t)] = L [cos bt] =
s

s2 + b2
.

Hence

L
(
ect cos bt

)
= L[ectf(t)] = F (s− c)]

=
s− c

(s− c)2 + b2
.

Example 10 Show that L
(
ect sin bt

)
= b

(s−c)2+b2
.

Solution is left as an exercise.

Exercises

In Exercises 1-6, find the Laplace transforms of the given functions.

1. 2tet

2. t2e−2t

3. e−2t cos t

4. e−at[A cos bt+B sin bt]

5. et
(
cosh 2t+ 1

2 sinh 2t
)

6. e−t (2 cos 3t− sin 3t)

Answers

1. 2
(s+2)3

2. 2
(s+2)3

3. s+2
(s+2)2+1

4. A(s+a)+Bb

(s+a)2+b2

5. s
(s−1)2−4

6. 2(s+2)−1

(s+2)2+9

Table: Some functions f(t) and their Laplace transforms
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f(t) L[f(t)]

1

ecttn, n = 1, 2, . . .
n!

(s− c)n+1

2

ect cos bt
s− c

(s− c)2 + b2

3

ect sin bt
b

(s− c)2 + b2

Inverse Laplace Transform using Theorem 4

The following result is an immediate consequence of Theorem

4.

Corollary 2 (Inverse Laplace transform using Theorem 4)

If

L[f(t)] = F (s),

then

L−1 [F (s− c)] = ectf(t) = ectL−1 [F (s)] . (19.7)

Example 11 Find L−1
[

1
(s−1)4

]
.
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Solution

TakeF (s) = 1
s4 , then f (t) = L−1 [F (s)] = L−1

[
1
s4

]
= t3

3 !

Hence by (19.7) above,

L−1

[
1

(s− 1)4

]
= L−1 [F (s− 1)] = e1tf (t) = et

t3

3 !
=
t3et

6
.

Example 12 Find the inverse transform of s+2
(s+2)2+1

.

Solution

Take F (s) = s
s2+1

, then f(t) = L−1[F (s)] = cos t

Here F (s− c) = F (s− (−2)) = s+2
(s+2)2+1

.

Hence

L−1 [F (s− c)] = ectf(t) = ectL−1[F (s)] = ectL−1

[
s

s2 + 1

]
= e−2t cos t.

Example 13 Find the inverse transform of s
(s−1)2−4

.

Solution

s

(s− 1)2 − 4
=

s− 1 + 1
(s− 1)2 − 22

=
s− 1

(s− 1)2 − 22
+

1
(s− 1)2 − 22

TakingF (s− c) = F (s− 1) = s−1
(s−1)2−22 , we have

L−1

(
s− 1

(s− 1)2 − 22

)
= et cosh 2t

Similarly takingF (s− a) = F (s− 1) = 1
(s−1)2−22 , we have

L−1

(
1

(s− 1)2 − 22

)
= et

sinh 2t
2
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...L−1

(
s

(s− 1)2 − 4

)
= et

(
cosh 2t+

sinh 2t
2

)
Example 14 Find the inverse transform of

s2 + 2s+ 3
(s2 + 2s+ 2)(s2 + 2s+ 5)

Solution

To apply the methods of partial fractions, we write

s2 + 2s+ 3
(s2 + 2s+ 2)(s2 + 2s+ 5)

=
As+B

s2 + 2s+ 2
+

Cs+D

s2 + 2s+ 5
(19.8)

and obtain

s2 + 2s+ 3 = (As+B)(s2 + 2s+ 5) + (Cs+D)(9s2 + 2s+ 2)

Equating like powers of s, we obtain

A = C = 0, B =
1
3
, D =

2
3
.

Now (19.8) can be written as

s2 + 2s+ 3
(s2 + 2s+ 2)(s2 + 2s+ 5)

=
1/3

(s+ 1)2 + 12
+

2/3
(s+ 1)2 + 22

,

and so

L−1

[
s2 + 2s+ 3

(s2 + 2s+ 2)(s2 + 2s+ 5)

]
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=
1
3
L−1

[
1

(s+ 1)2 + 12

]
+

2
3
L−1

[
1

(s+ 1)2 + 22

]

=
1
3
e−t sin t+

1
3
e−t sin 2t

=
1
3
e−t [sin t+ sin 2t] .

Example 15 Find L−1
[

s
(s+3)2+1

]
.

Solution

Step 1:

s

(s+ 3)2 + 1
=

s+ 3− 3
(s+ 3)2 + 1

=
s+ 3

(s+ 3)2 + 1
− 3

(s+ 3)2 + 1
(19.9)

Step 2: Evaluation of L−1
[

s+3
(s+3)2+1

]
.

TakingF (s) = s
s2+1

, we get f(t) = L−1 [F (s)] = L−1
[

s
s2+1

]
= cos t

Hence by (19.9) above,

L−1

[
s+ 3

(s+ 3)2 + 1

]
= L−1 [F (s− (−3))] = e−3tf(t) = e−3t cos t

Step 3: Proceeding similarly,

L−1

[
3

(s+ 3)2 + 1

]
= 3e−3t sin t.

Using (19.9) and Linearity Theorem for Inverse transform, we ob-
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tain
...L−1

[
s

(s+ 3)2 + 1

]
= e−3t cos t− 3e−3t sin t

Example 16 Find the inverse transform of s
(s−3)5

.

Solution

s

(s− 3)5
=
s− 3 + 3
(s− 3)5

=
1

(s− 3)4
+

3
(s− 3)5

L−1

[
s

(s− 3)5

]
= L−1

[
1

(s− 3)4

]
+ L−1

[
3

(s− 3)5

]

= e3t t
3

3!
+ 3e3t t

4

4!
=
t3e3t

3!

[
1 +

3t
4

]
Example 17 Find the inverse transform of 1+2s

(s+2)2(s−1)2

Solution By the method of partial fraction, we obtain

1 + 2s
(s+ 2)2(s− 1)2

=
1
3

1
(s− 1)2

− 1
3

1
(s+ 2)2

.

L−1

[
1 + 2s

(s+ 2)2(s− 1)2

]
=

1
3
L−1 1

(s− 1)2
− 1

3
L−1 1

(s+ 2)2

=
1
3
ett− 1

3
e−2tt =

t

3
[
et − e−2t

]
.

Example 18 Find L−1
[

e−3s

(s−1)4

]
Solution
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By Corollary 2 to Theorem 4,

L
−1

[
1

(s− 1)4

]
= etL

−1

[
1
s4

]
= et

t3

3!
=
t3et

6
.

Letting F (s) = 1
(s−1)4

, we have f (t) = t3et

6 , and hence Corollary

1 to Theorem 1(Shifting on the t-axis) , gives

L−1

[
e−3s

(s− 1)4

]
= u3(t)f(t− 3)

=
1
6
u3(t) (t− 3)3et−3

=


1
6
(t−3)3et−3, t>3

0, t≤3

Example 19 Solve the initial value problem

y′′ + 2y′ + 2y = r(t),

r(t) =

{
10 sin 2t if 0 < t < π,

0 if t > π

y(0) = 1, y′(0) = −5.

Solution

The given differential equation is

y′′ + 2y′ + 2y = [u(t− 0)− u(t− π)]10 sin 2t.
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Taking Laplace transforms on both sides, we obtain

L[y′′ + 2y′ + 2y] = L {[u(t)− u(t− π)]10 sin 2t} .

That is,

(s2Y−s+5)+2(sY−1)+2Y = L {u(t)10 sin 2t}+L {u(t− π)10 sin 2t}
(19.10)

Using the result (Second Shifting theorem; Shifting on the t-axis)

L [f(t− a)u(t− a)] = e−asL[f(t)] = e−asF (s), for s > a,

we have

L {u(t) sin 2t} = L {u(t− 0) sin 2(t− 0)}

= e−0sL[sin 2t]

=
2

s2 + 4
.

Also,

L {u(t− π) sin 2t} = L {u(t− π) sin 2(t− π)} ,

since sin 2(t− π) = sin(2t− 2π) = sin 2t

= e−πsL[sin 2t]

= e−πs 2
s2 + 4

.
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Hence (19.10) becomes

(s2Y − s+ 5) + 2(sY − 1) + 2Y = 10 · 2
s2 + 4

(1− e−πs).

i.e.,

(s2 + 2s+ 2)Y − s+ 3 =
20

s2 + 4
(1− e−πs)

i.e.,

(s2 + 2s+ 2)Y =
20

s2 + 4
(1− e−πs) + s− 3.

Hence,

Y =
20

(s2 + 4)(s2 + 2s+ 2)
− 20e−πs

(s2 + 4)(s2 + 2s+ 2)
+

s− 3
s2 + 2s+ 2

(19.11)

In the first fraction in (19.11) s2+4 contributes unrepeated1

complex roots 2i and −2i; also s2 +2s+2 contributes unrepeated

complex roots; hence the first fraction in (19.11) has a partial

fraction representation

20
(s2 + 4)(s2 + 2s+ 2)

=
As+B

s2 + 4
+

Ms+N

s2 + 2s+ 2
.

Multiplication by the common denominator gives

20 = (As+B)(s2 + 2s+ 2) + (Ms+N)(s2 + 4).

1Ref. the section Unrepeated Complex Factors (s−a)(s−ā ) in the case
of partial fractions in the chapter “Laplace and Inverse Laplace Transforms”.
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We determine A, B, M, N. Equating the coefficients of each power

of s on both sides gives the four equations

(a) [s3] : 0 = A+M

(b) [s2] : 0 = 2A+B +N

(c) [s] : 0 = 2A+ 2B + 4M

(d) [s0] : 2 0 = 2B + 4N

We can solve this, for instance, obtaining M = −A from (a), then

A = B from (c), then N = −3A from (b), and finally A = −2

from (d). Hence A = −2, B = −2, M = 2, N = 6, and the first

fraction in (19.11) has the representation

−2s− 2
s2 + 4

+
2s+ 6

(s+ 1)2 + 1

or
−2s− 2
s2 + 4

+
2(s+ 1) + 4
(s+ 1)2 + 1

or

−2
s

s2 + 22
− 2
s2 + 22

+ 2 · s+ 1
(s+ 1)2 + 1

+ 4 · 1
(s+ 1)2 + 1

.

Its inverse transform (in the last two summands using First Shift-

ing Theorem) is

−2 cos 2t− sin 2t+ e−t(2 cos t+ 4 sin t). (19.12)

In the second fraction in (19.11) taken with the minus sign

we have the factor e−πs, so that from (19.12) and the second
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shifting theorem (shifting on the t-axis) [i.e., using

L−1
[
e−asF (s)

]
= f (t − a)u(t− a)],

we get the inverse transform [Attention! The minus sign is in-

cluded in the following:]

−{−2 cos 2(t− π)− sin 2(t− π)+

e−(t−π) [2 cos(t− π) + 4 sin(t− π)]u(t− π)
}

∗=−
{
−2 cos 2t− sin 2t+ e−teπ[−2 cos t− 4 sin t]

}
u(t− π)

=
{
2 cos 2t+ sin 2t+ e−teπ[2 cos t+ 4 sin t]

}
u(t− π). (19.13)

2

2In the equality
∗
= above, we have used the following trigonometric identi-

ties:
cos(A−B) = cos A cos B + sin A sin B

sin(A−B) = sin A cos B − cos A sin B

which in particular gives

cos 2(t− π) = cos(2t− 2π) = cos 2t;

sin 2(t− π) = sin(2t− 2π) = sin 2t;

cos(t− π) = − cos t; sin(t− π) = − sin t;

Thus, for t > π, since u(t− π) = 1, (19.13) gives

2 cos 2t + sin 2t + e−teπ[2 cos t + 4 sin t] (19.14)
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Now, in the last fraction in (19.11) applying Corollary 2 to First

Shifting Theorem (Shifting on the s-axis) in page 331, i.e., using

L−1 [F (s− a)] = eatL−1 [F (s)] ,

we obtain

L−1

[
s− 3

s2 + 2s+ 2

]
= L−1

{
s+ 1− 4

(s+ 1)2 + 1

}
= L−1

{
s+ 1

(s+ 1)2 + 1

}
− 4L−1

{
1

(s+ 1)2 + 1

}
= e−t(cos t− 4 sin t) (19.15)

We conclude that:

1. The solution of the given initial value problem for 0 < t < π,

is the sum of (19.12) and (19.15); and is

y(t) = 3e−t cos t− 2 cos 2t− sin 2t for 0 < t < π

1. The solution of the given initial value problem fort > π,

is the sum of (19.12), (19.14) and (19.15); and is y(t) =

e−t[(3 + 2eπ) cos t+ 4eπ sin t] fort > π.

Exercises In Exercises 1-18, find the inverse Laplace transform

of the given function.
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1. nπ
(s+2)2+n2π2

2. a1
(s−3)2

+ 2a2
(s−3)3

3. s
(s+3)2+1

4. as+b
(s+c)2+ω2

5. 1
(s+1)(s2+2s+2)

6. 3s2+16s+26
s(s2+4s+13)

7. 2(s−a)
(s−a)2+b2

+ 8−6s
16s2+9

8. 1
s(s+2)3

9. 2s2−4
(s+1)(s−2)(s−3)

10. 3s−8
s2−4s+20

11. 6s−4
s2−4s+20

12. 1
(s−5)10

13. s−3
(s−3)2+52

14. s+2
(s+2)2+32

15. s
(s−3)8

16. s
(s+8)2+72

17. 1
(s+1)2

18. 2
(s−a)3

Answers

1. e−2t sinπt

2. e3t
(
a1t+ a2t

2
)

3. e−3t (cos t− 3 sin t)

4. e−ct
[
a cosωt+ b−ac

ω sinωt
]

5. e−t [1− cos t]

6. 2+e−2t cos 3t+2e−2t sin 3t

7. 2eat cos bt + 1
2 sin 3t

4 −
3
8 cos 3t

4

8. 1
8−

1
8e

−2t− 1
4 te

−2t− 1
4 t

2e−2t

9. −1
6e

−t − 4
3e

2t + 7
2e

3t

10. 3e2t cos 4t− 1
2e

2t sin 4t

11. 6e2t cos 4t+ 2e2t sin 4t

12. e5t t9

9!

13. e3t cos 5t

14. e−2t cos 3t
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15. e3t
[

t6

6! + 3 t7

7!

]
16. e−8t(cos 7t− 8

7 sin 7t)

17. e−tt

18. t 2ea t

Table: Some elementary functions F(s) and their inverse

Laplace transforms
F (s) f(t) =

L−1 [F (s)]

F (s) f(t) =

L−1 [F (s)]

1 0 0 8 1
s−i a eiat

2 1
s 1 9 s

s2+a2 cos at

3 1
s2 t 10 1

s2+a2
sin at

a

4 1
s3

t2

2! 11 s
s2−a2 cosh at

5 1
sn+1

tn

n !

n=1,2,...

12 1
s2−a2

1
a sinh at

6 1
sa+1

ta

Γ(a+1)

a is positive

13 s−a
(s−a)2+ω2 eat cosωt

7 1
s−a eat ω

(s−a)2+ω2 eat sinωt

19.2 Impulse Functions. Dirac’s Delta Func-

tion

Phenomena of an impulsive nature, such as the action of very

large forces over very short intervals of time, are of great practical

interest, since they arise in various applications. This situation

occurs, for instance, when a cricket ball is hit, a system is given

a blow by a hammer, and so on. Such problems often lead to
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differential equation of the form

ay′′ + by′ + cy = g(t),

where g(t) is large during a short interval t0 − τ < t < t0 + τ and

is otherwise zero.

We now show how to solve problems involving short impulses

by Laplace transforms.

In mechanics, the impulse I(τ) of a force g(t) over the time

interval t0 − τ < t < t0 + τ is defined to be the integral of g(t)

from t0 − τ to t0 + τ . i.e.,

I(τ) =
∫ t0+τ

t0−τ
g(t) dt,

or, since g(t) = 0 outside of the interval (t0 − τ, t0 + τ),

I(τ) =
∫ ∞

−∞
g(t) dt.

Impulse is a measure of the strength of the forcing function.

The analog for an electric circuit is the integral of the electro

motive force applied to the circuit, integrated fromt0−τ to t0+τ .

Of particular practical interest is the case of a very short τ (and

its limit τ → 0), that is, the impulse of a force acting only for an

instant. To handle the case, we consider the function (with t0 = 0)
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g(t) = dτ (t) =


1
2τ if − τ < t < τ

0 otherwise

(19.16)

where τ is small positive constant.

Its impulse I(τ) is 1, since

I(τ) =
∫ ∞

−∞
g(t) dt =

∫ τ

−τ

1
2τ
dt =

1
2τ

[t]τ−τ = 1.

Attention! In the above, τ > 0 plays an important role, because

only then [t]τ−τ = 2τ .

We note that

lim
τ→0

dτ (1) = 0, τ 6= 0. (19.17)

Also, since

I(τ) = 1 for each τ 6= 0

it follows that

lim
τ→0

I(τ) = 1. (19.18)

Equations (19.17) and (19.18) can be used to define unit impulse

functionδ, which imparts an impulse of magnitude one at t = 0

but is 0 for all values of t other than 0. i.e., the unit impulse

function δ is defined to have the properties

δ(t) = 0, t 6= 0 (19.19)



346 CHAPTER 19. UNIT STEP AND IMPULSE FUNCTIONS

and ∫ ∞

−∞
δ(t) dt = 1. (19.20)

Attention! There is no ordinary function of the kind studied in

calculus that satisfies both (19.19) and (19.20), because an ordi-

nary function that is every where zero except at a single point

must have the integral 0, not 1. Though δ(t) is not a function in

the ordinary sense, it is a so-called “generalized function”.

Nevertheless, in impulse problems it is convenient to operate

on δ(t) as a ‘function’. The “function” δ defined by (19.18) and

(19.19) is usually called the Dirac delta function. δ(t) corre-

sponds to impulse at t = 0. A unit impulse at an arbitrary point

t = t0 is given by δ(t− t0). From equations (19.19) and (19.20) it

follows that

δ(t− t0) = 0, t 6= t0

and ∫ ∞

−∞
δ(t− t0)dt = 1.

The delta function does not satisfy the conditions of Existence

Theorem for Laplace Transforms, but its Laplace transform can

be formally defined. Since δ(t) is defined as the limit of dτ (t) as

τ → 0,it is natural to define the Laplace transform of δ as a similar

limit of the transform of dτ . In particular, we will assume that

t0 > 0 and define L{δ(t− t0)} by the equation

L{δ(t− t0)} = lim
τ→0

L{dτ (t− t0)}. (19.21)
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To evaluate the limit in Eq. (19.21), we first observe that if τ < t0,

which must eventually be the case as τ → 0, then t0−τ > 0. Since

dτ (t− t0)is nonzero only in the interval from t0 − τ to t0 + τ , we

have

L{dτ (t− t0)} =
∫ ∞

0
e−stdτ (t− t0) dt

=
∫ t0+τ

t0−τ
e−stdτ (t− t0)dt.

Substituting for dτ (t− t0)from Eq. (19.16), we obtain

L{dτ (t− t0)} =
1
2τ

∫ t0+τ

t0−τ
e−stdt = − 1

2sτ
[
e−st

]t=t0+τ

t=t0−τ

=
1
2s
e−st0(esτ − e−sτ )

or

L{dτ (t− t0)} =
sinh sτ
sτ

e−st0 . (19.22)

The quotient (sinh sτ)/sτ is indeterminate as τ → 0, but its limit

can be evaluated by L’Hopital’s rule.

lim
τ→0

sinh sτ
sτ = lim

τ→0

s cosh sτ
s ,by applying L’Hopital’s rule.

= lim
τ→0

cosh sτ = 1.

Then from Eq. (19.21) and (19.22) it follows that

L{δ(t− t0)} = e−st0 . (19.23)

Equation (19.23) defines L{δ(t − t0)}for any t0 > 0. We extend



348 CHAPTER 19. UNIT STEP AND IMPULSE FUNCTIONS

this result, to allow t0 to be zero, by letting t0 → 0 on the right

side of Eq. (19.23); thus

L{δ(t)} = lim
t0→0

e−st0 = 1 (19.24)

In a similar way it is possible to define the integral of the product

of the delta function and any continuous function f. We have∫ ∞

−∞
δ(t− t0)f(t) dt = lim

τ→0

∫ ∞

−∞
dτ (t− t0)f(t)dt (19.25)

Now∫∞
−∞ dτ (t− t0)f(t)dt = 1

2τ

∫ t0+τ
t0−τ f(t)dt, using the definition (19.16)

of dτ (t)

= 1
2τ · 2τ · f(t∗), using the mean value theorem for integrals.

= f(t∗),

where t0 − τ < t∗ < t0 + τ. Hence t∗ → t0 as τ → 0, and it follows

from Eq.(19.25) that∫ ∞

−∞
δ(t− t0)f(t) dt = f(t0). (19.26)

Example 20 Solve

y′′ + 3y′ + 2y = δ(t− 1), y(0) = 0, y′(0) = 0

Solution
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Here t0 = 1. Hence Eq.(19.23) gives L[δ(t−1)] = e−s×1 = e−s.

Thus

L[y′′ + 3y′ + 2y] = L[δ(t− 1)]

gives

s2Y + 3sY + 2Y = e−s

or

Y =
1

s2 + 3s+ 2
e−s =

e−s

(s+ 1)(s+ 2)
=
(

1
s+ 1

− 1
s+ 2

)
e−s.

Taking F (s)= 1
s+1 −

1
s+2 , we obtain

f(t) = L−1[F (s)] = L−1

[
1

s+ 1

]
− L−1

[
1

s+ 2

]
= e−t − e−2t.

Hence, by (Shifting on the t-axis) Theorem, we have

y(t) = L−1
{
e−sF (s)

}
= u1(t)f(t− 1)

=

{
0 (0 ≤ t ≤ 1)

e−(t−1) − e−2(t−1) (t > 1)

Example 21 Solve

y′′ + 2y′ + 2y = δ(t− π), y(0) = 1, y′(0) = 0.

Solution
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Takingt0 = π, Eq.(19.23) gives

L[δ(t− π)] = e−πs.

Now taking Laplace transform on both sides, the differential equa-

tion yields

(s2 + 2s+ 2) Y (s)− s− 2 = e−πs.

Hence

Y (s) =
s+ 2

s2 + 2s+ 2
+

e−πs

s2 + 2s+ 2
.

Now

s+ 2
s2 + 2s+ 2

=
s+ 2

(s+ 1)2 + 1
=

s+ 1
(s+ 1)2 + 1

+
1

(s+ 1)2 + 1

Since L−1
[

s
s2+1

]
= cos t and L−1

[
1

s2+1

]
= sin t, we have

L−1

[
s+ 1

(s+ 1)2 + 1

]
= L−1

[
s− (−1)

[s− (−1)]2 + 1

]
= e−t cos t

and L−1
[

1
(s+1)2+1

]
= L−1

[
1

[s−(−1)]2+1

]
= e−t sin t.

Hence

L−1

[
s+ 2

s2 + 2s+ 2

]
= e−t cos t+ e−t sin t.

Taking

F (s) =
1

s2 + 2s+ 2
=

1
(s+ 1)2 + 1
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and noting the already obtained fact that

f(t) = L−1[F (s)] = e−t sin t,

we have

L−1[e−πs · F (s)] = uπ(t) f(t− π)

= uπ(t) e−(t−π) sin (t− π)

Hence

y(t) = L−1[Y (s)] = e−t cos t+ e−t sin t+ uπ(t) e−(t−π) sin (t− π)



Chapter 20
Differentiation and Integration

of Transforms

In this chapter we consider differentiation and integration of trans-

forms and finding out the corresponding operations for original

functions.

20.1 Differentiation of Transforms

Theorem 1 (Differentiation of Transforms)

If L[f(t)] = F (s), then

L[tnf(t)] = (−1)n d
n

dsn
F (s) = (−1)nF (n)(s) (n = 1, 2, 3, . . .)

(20.1)

352
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Proof By the definition of Laplace transform we have

F (s) = L[f(t)] =
∫ ∞

0
e−stf(t)dt.

Hence
d

ds
F (s) =

d

ds

[∫ ∞

0
e−stf(t)dt

]
.

On the RHS we have to perform first integration and then a dif-

ferentiation. Under certain conditions, it is permissible to inter-

change these operators.

Let us suppose that these conditions are satisfied in this case.

Moreover, when we take the differentiation under the integral sign,

since there are two variables s and t, we shall use the symbol ∂
∂s .

Thus

d

ds
F (s) =

∫ ∞

0

∂

∂s

{
e−stf(t)dt

}
=

∫ ∞

0
e−st(−t)f(t)dt = −

∫ ∞

0
e−st[t f(t)]dt

= −L [tf(t)],by the definition of Laplace transform.

Thus,

L[t f(t)] = − d

ds
[F (s)] = −F ′(s) (20.2)

By a repeated application, it can be proved that

L[tnf(t)] = (−1)n d
n

dsn
F (s) = (−1)nF (n)(s), n = 1, 2, ...
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Example 1 Find L[t eat]

Solution

Take f(t) = eat, then

F (s) = L [f (t)] = L
[
eat
]

= 1
s−a ; s > a

Hence using (20.2) above we have

L[teat] = − d

ds
F (s) = − d

ds

(
1

s− a

)
=

1
(s− a)2

, s > a;

Example 2 Show that L[tneat] = n!
(s−a)n+1

Solution

We know that

L[eat] =
1

s− a
, s > a.

Hence, using theorem, we have

L[tneat] = (−1)n d
n

dsn

(
1

s− a

)
= (−1)n(−1)

dn−1

dsn−1

(
1

(s− a)2

)
...

= (−1)n(−1)n n !
(s− a)n+1

=
n!

(s− a)n+1
.

In particular,

L[teat] =
1

(s− a)2
, s > a;
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L[t2eat] =
2

(s− a)3
, s > a.

Example 3 Show that L[t2eat] = 2!
(s−a)3

.

Solution

This is a particular case of the above example. If we prove

independently, then

L[t2eat] = (−1)2
d2

ds2
(F (s)) , where F (s) = L[eat]

= (−1)2
d2

ds2

(
1

s− a

)
=

2!
(s− a)3

.

Example 4 Find L[t sin t]

Solution

L[ sin t] = 1
s2+1

implies that

L[t sin t] = − d

ds

(
1

s2 + 1

)
=

2s
(s2 + 1)2

.

Example 5 Prove that L[t sin at] = 2as
(s2+a2)2

.

Solution

Proceed as in the previous example.

Example 6 Find L[t2 cos t]

Solution
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We know that L[cos t] = s
s2+1

. Hence, by the theorem,

L[t2 cos t] = (−1)2
d2

ds2

(
s

s2 + 1

)
,

=
d

ds

(
(s2 + 1)− 2s× s

(s2 + 1)2

)
, using

quotient rule of differentiation

=
d

ds

(
1− s2

(s2 + 1)2

)
=

(s2 + 1)2(−2s)− (1− s2)(s2 + 1)4s
(s2 + 1)4

, again using

quotient rule of differentiation

=
2s3 − 6s
(s2 + 1)3

, on simplification

Example 7 Find L[t2 coshπt].

Solution

L[t2 coshπt] = (−1)2
d2

ds2

(
s

s2 − π2

)
,

=
2s3 + 6π2s

(s2 − π2)3
,

on simplification.

Example 8 Find L[te−t sin t]

Solution

We have

L[sin t] =
1

s2 + 1
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and hence by shifting on the s-axis theorem,

L[e−t sin t] =
1

(s+ 1)2 + 1
.

Now using Theorem 1 this implies

L[te−t sin t] = − d

ds

(
1

(s+ 1)2 + 1

)
=

2(s+ 1)
((s+ 1)2 + 1)2

, using quotient rule

=
2(s+ 1)

(s2 + 2s+ 2)2
.

Example 9 Find L[te2t cos 5t].

Solution

We have L[cos 5t] = s
s2+25

and hence

L[e2t cos 5t] =
s− 2

(s− 2)2 + 25
.

Now this implies by Theorem 1 that

L[te2t cos 5t] = − d

ds

(
s− 2

(s− 2)2 + 25

)
=

(s− 2)2 − 25
[(s− 2)2 + 25]2

,

on simplification.
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20.2 Exercises

In Exercises 1-7, find the Laplace transform.

1. t cos 2t

2. te2t

3. t cosh t

4. t2et

5. t sinh 2t

6. t2 sinh 2t

7. t2 cosωt

8. Using Differentiation of Transforms Theorem, derive the

following formulae:

(i) L−1
[

s
(s2+β2)2

]
= 1

2β (t sinβt)

(ii) L−1
[

1
(s2+β2)2

]
= 1

2β3 (sinβt− βt cosβt)

(iii) L−1
[

s2

(s2+β2)2

]
= 1

2β (sinβt+ βt cosβt)

20.2.1 Answers

1. s2−4
(s2+4)2

2. 1
(s−2)2

3. s2+1
(s2−1)2

4. 2
(s−1)3

5. 4s
(s2−4)2

6.
4(4+3s2)
(s2−4)3

7. 2s(s2−3ω2)
(s2+ω2)3

20.3 Integration of Transforms

Theorem 2 (Integration of Transform) If f(t) satisfies the

conditions of the existence of Laplace transform theorem and the
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limit of f(t)
t as t approaches to 0 from the right exists, then

L

[
f(t)
t

]
=
∫ ∞

s
F (u)du ( s > γ ) (20.3)

Proof From the definition of Laplace transform it follows that∫ ∞

s
F (u)du =

∫ ∞

s

[∫ ∞

0
e−utf(t)dt

]
du

Under the assumptions of the theorem it is possible to interchange

the order of integration, so that

∫ ∞

s
F (u)du =

∫ ∞

0

[∫ ∞

s
e−utf(t)du

]
dt =

∫ ∞

0
f(t)

[∫ ∞

s
e−utdu

]
dt

The integral over u on the right equals e−st

t , when s > γ and there-

fore, ∫ ∞

s
F (u)du =

∫ ∞

0
e−st f(t)

t
dt = L

[
f(t)
t

]
, s > γ

Example 10 Find L
[

1−et

t

]
Solution

Here take f(t) = 1− et, then

F (s) = L [f (t)] = L[1]− L[et] =
1
s
− 1
s− 1
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L
[
1− et

t

]
= L

[
f(t)
t

]
=

∫ ∞

s
F (u)du, using Theorem 2

=
∫ ∞

s

(
1
u
− 1
u− 1

)
du

= [log u− log(u− 1)]∞s

=
[
log

u

u− 1

]∞
s

= log 1− log
s

s− 1

= − log
s

s− 1
= log

s− 1
s

.

Example 11 Find L
[

sin at
t

]
Solution

Since L[sin at] = a
s2+a2 ,

L

[
sin at
t

]
=
∫ ∞

s

a

u2 + a2
du =

[
tan−1 u

a

]∞
s

=
π

2
− tan−1 s

a
= cot−1 s

a

Inverse Transform: Corollary to (3)

Using (20.3) above, we have

L−1

[∫ ∞

s
F (u)du

]
=
f(t)
t
. (20.4)

The following result is needed in the development of the coming

example.

RESULT Show that if
∫∞
s F (u)du = g(s), then F (u) = − d

dug(u).
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Proof

− d

du
g(u) = − lim

h→0

g(u+ h)− g(u)
h

= − lim
h→0

∫∞
u+h F (r)dr −

∫∞
u F (r)dr

h

= lim
h→0

∫∞
u F (r)dr −

∫∞
u+h F (r)dr

h

= lim
h→0

∫ u+h
u F (r)dr

h
= F (u).

Example 12 Find the inverse transform of the function loge(1 +
ω2

s2 )

Solution

Let
∫∞
s F (u)du = loge

(
1 + ω2

s2

)
Then using the above Result,

F (u) = − d

du
loge

(
1 +

ω2

u2

)
= − d

du
loge

(
u2 + ω2

u2

)

=
d

du

(
2 log u− log(u2 + ω2)

)
=

2
u
− 2u
u2 + ω2

...f(t) = L−1 [F (s)] = L−1

[
2
s
− 2s
s2 + ω2

]
= 2− 2 cosωt.

This function satisfies the conditions under which (20.3) holds.

Hence using (20.4), we obtain

L−1

[
log
(

1 +
ω2

s2

)]
= L−1

[∫ ∞

s
F (u)du

]
=
f(t)
t

=
2
t
(1−cosωt).
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Exercises

In Exercises 1-6, find the inverse Laplace transform of the given

function.

1. loge
s+a
s+b

2. loge
s

s−1

3. loge
s2+1

(s−1)2

4. cot−1 s
ω

5. cot−1 (s+ 1)

6. tan−1 1
s

Answers

1. e−bt−e−at

t

2. et−1
t

3.
2(et−cos t)

t

4. sin ωt
t

5. e−t sin t
t

6. sin t
t



Chapter 21
Convolution and Integral

Equations

21.1 Convolution and Integral Equations

An important general property of Laplace transformation has to

do with product of transforms. It often happens that we are

given two transforms F (s) and G(s) whose inverses f(t) and g(t)

we know, and we would like to find the inverse of the product

F (s)G(s) from those known inverses f(t)and g(t). The inverse is

written

(f ∗ g)(t), which is a standard notation and is called the con-

volution of f and g. Definition follows:

Definition The convolution of f and g is a function h, usually

363
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written f ∗ g, defined by

h(t) = (f ∗ g)(t) =
∫ t

0
f(t− u)g(u)du.

Theorem 1 (Properties of Convolution)

(i). (Commutativity of convolution) f ∗ g = g ∗ f .
(ii). (Distributive law) f ∗ (g + h) = f ∗ g + f ∗ h
(iii). (Associative law) (f ∗ g) ∗ h = f ∗ (g ∗ h)
(iv). f ∗ 0 = 0 ∗ f = 0.

Proof We prove only (i) leaving the rest to the exercises.

Put t – u = v, then du = − dv,

u = 0 implies v = t ; u = t implies v = 0.

Hence

(f ∗ g)(t) = −
∫ 0

t
f(v)g(t− v)dv =

∫ t

0
g(t− v)f(v)dv = (g ∗ f)(t).

Theorem 2 (Convolution Theorem) If f(t) and g(t) are the

inverse transforms of F(s) and G(s) respectively, the inverse trans-

form of the product F(s)G(s) is the convolution of f(t)and g(t).

i.e.,

L−1 [F (s)G(s)] = (f ∗ g)(t) (21.1)

Proof of the Convolution Theorem

By definition

L−1 [F (s)] = f(t) and L−1 [G(s)] = g(t)
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and this implies that

L [f(t)] = F (s) and L [g(t)] = G(s).

Then

F (s)G(s) = F (s)L [g(t)] = F (s)
∫ ∞

0
e−stg(t)dt =

∫ ∞

0
e−stF (s)g(t)dt

(21.2)

But using the definition of F (s),

e−stF (s) = e−stL [f(t)] = e−st

∫ ∞

0
e−suf(u)du

=
∫ ∞

0
e−s(u+t)f(u)du

=
∫ ∞

t
e−svf(v − t)dv, by putting u+ t = v.

Hence (21.2) implies

F (s)G(s) =
∫ t=∞

t=0

∫ v=∞

v=t
e−svf(v − t)g(t) dv dt (21.3)

Now we assume that the functions f and g are such as to justify

a change in the order of integration in (21.3). We note that in

(21.3), we first integrate with respect to v from v = t to v = ∞
and then integrate with respect to t from t = 0 to t = ∞. The

region of integration R is

R : 0 ≤ t <∞; t ≤ v <∞. (21.4)
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In order to change the order integration in (21.3), we have to find

the alternate form of the region R. For this we first draw a rough

sketch of the region R using the following facts:

We note that R is the intersection of the following two regions

in the vt plane:

(i) the upper half plane in the vt- plane (this region corresponds

to 0 ≤ t <∞ .)

(ii) the region to the right of the line v = t (this region corre-

sponds to t ≤ v ≤ ∞ .)

The region R is shown in Fig.21.1 where the shaded portion is

extended to infinity in the vt-plane.

Figure 21.1: The region of integration is the shaded portion that is

extended to infinity
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Referring to Fig. 21.1, we note that while v varies from 0 to ∞ ,

t varies from 0 to v. Hence the alternate form of (21.4) is

0 ≤ v <∞; 0 ≤ t ≤ v (21.5)

Now using the system of inequalities in (21.5) as the representation

of the region of integration, by changing the order of integration,

(21.3) yields

F (s)G(s) =
∫ v=∞

v=0

∫ t=v

t=0
e−svf(v − t)g(t)dt dv

=
∫ v=∞

v=0
e−sv

{∫ t=v

t=0
f(v − t)g(t)dt

}
dv (21.6)

Now, by the definition of convolution,∫ t=v

t=0
f(v − t)g(t)dt = (f ∗ g)(v).

Hence, (21.6) becomes

F (s)G(s) =
∫ v=∞

v=0
e−sv(f ∗ g)(v)=L[(f ∗ g)(v)].

Hence

L−1 [F (s)G(s)] = (f ∗ g)(t)

This completes the proof.

Remark to Convolution Theorem
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By the notations as in theorem, (21.1) can be restated as

F (s)G(s) = L [(f ∗ g)(t)] . (21.7)

Example 1 Using convolution property, find L−1
[

1
s(s2+a2)

]
.

Solution

Let F (s) = 1
s , G(s) = 1

s2+a2 , then

f(t) = L−1

(
1
s

)
= 1; g(t) = L−1

(
1

s2 + a2

)
=

sin at
a

.

Thus f(t− u) = 1; and hence

L−1

(
1

s(s2 + a2)

)
=
∫ t

0
1 · sin au

a
du =

∫ t

0

sin au
a

du

= − 1
a2

[cos au]t0 =
1
a2

[1− cos at]

Example 2 Using convolution property, find L−1
[

1
s2(s−a)

]
Solution

Let

F (s) =
1
s2
, G(s) =

1
s− a

,

then

f(t) = L−1

(
1
s2

)
= t; g(t) = L−1

(
1

s− a

)
= eat.
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Thus,

f(t− u) = t− u

and hence,

L−1

(
1

s2(s− a)

)
=

∫ t

0
(t− u)︸ ︷︷ ︸

First Function

eau︸︷︷︸
Derivative of the second function

du

=

 (t− u)︸ ︷︷ ︸
First Function

eau

a︸︷︷︸
Second function


t

0

−
∫ t

0
(0− 1)︸ ︷︷ ︸

Derivative of the First Function

eau

a︸︷︷︸
Second function

du

= − t
a

+
1
a

∫ t

0
eaudu

= − t
a

+
1
a

[
eau

a

]t

0

= − t
a

+
1
a

(
eat − 1
a

)
=

1
a2

[
eat − at − 1

]
.

Example 3 Using convolution property, find L −1
[

1
(s2+a2)2

]
.

Solution

L −1

[
1

(s2 + a2)2

]
= L −1

[
1
s

s

(s2 + a2)2

]
Let

F (s) =
1
s
, G(s) =

s

(s2 + a2)2
,
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then

f(t) = L−1

(
1
s

)
= 1; g(t) = L−1

(
s

(s2 + a2)2

)
=
t sin at

2a
; f(t−u) = 1 .

Hence

L−1

[
1
s

s

(s2 + a2)2

]
=

∫ t

0

u sin au
2a

du

=
1
2a

{[
−u cos au

a

]t

0

+
∫ t

0

cos au
a

du

}
=

1
2a3

[sin at− at cos at] ,

on simplification.

Partial Fractions: Repeated Complex Factors [(s − a)(s −
ā)]2

In the chapter “Laplace and Inverse Laplace Transforms” we have

mentioned the case of repeated complex factors while undergoing

partial fraction. In that case the partial fractions are of the form

As+B

[(s− a)(s− ā)]2
+

Ms+N

(s− a)(s− ā)
. (21.8)

In the following example we have a partial fraction of the form
Kω0

(s2+ω2
0)

2 [i.e., only first part of the general form (??).]

Solution of Initial Value Problems

Example 4 Solve the initial value problem

y′′ + ω0
2y = K sinω0t
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with y(0) = 0 and y′(0) = 0,

Solution

L[y′′ + ω0
2y] = L[k sinω0t]

gives s2Y + ω0
2Y = Kω0

(s2+ω2
0)

2

Hence

Y =
Kω0

(s2 + ω0
2)2

The denominator is a repeated complex factor with roots s = iω0

and −iω0.

We find its inverse of Y by convolution. Taking F (s) = ω0

s2+ω2
0
, we

have f(t) = L−1[F (s)] = sinω0t and so we obtain

y(t) = L−1(Y ) = L−1

[
K

ω0
· ω0

s2 + ω0
2
· ω0

s2 + ω0
2

]
= L−1

[
K

ω0
F (s)F (s)

]
=

K

ω0
L−1 [F (s)F (s)] , applying the linearity

=
K

ω0
(f ∗ f)(t), applying convolution

=
K

ω0

∫ t

0
f(t− u)f(u)du

=
K

ω0

∫ t

0
sin ω0(t− u) sinω0udu (21.9)

Now with C = ω0(t− u) and D = ω0u, the trigonometric identity

−2 sinC sinD = cos(C +D)− cos(C −D)
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gives

sin ω0(t− u) sinω0u = −1
2
{cosω0t− cos(ω0t− 2ω0u)}

=
1
2
{cos(ω0t− 2ω0u)− cosω0t}

= 1
2 {cos(2ω0u− ω0t)− cosω0t} , since

cos(ω0t− 2ω0u) = cos[−(ω0t− 2ω0u)]

Using this (21.9) yields

y(t) =
K

2ω0

∫ t

0
{cos(2ω0u− ω0t)− cosω0t} du

=
K

2ω0

∫ ω0t

0

{
cosw

1
2ω0

dw

}
− cosω0t

∫ t

0
du,

where we have taken

w = 2ω0u − ω0t; w = −ω0t when u = 0;w = ω0t when u = t

So

y(t) =
K

2ω0

(
sin ω0t

2ω0
− sin (−ω0t)

2ω0
− t cosω0t

)
=

K

2ω0

(
sin ω0t

ω0
− t cosω0t

)
=

K

2ω2
0

(sin ω0t− ω0t cosω0t) .

Example 5 Find the solution of the initial value problem

y′′ + 4y = g(t), (21.10)
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y(0) = 3, y′(0) = −1. (21.11)

Solution

By taking the Laplace transform of the differential equation

and using the initial conditions, we obtain

s2Y (s)− 3s+ 1 + 4Y (s) = G(s),

where Y (s) = L[y(t)] and G(s) = L[g(t)].

Hence

Y (s) =
3s− 1
s2 + 4

+
G(s)
s2 + 4

. (21.12)

i.e.,

Y (s) = 3
s

s2 + 4
− 1

2
2

s2 + 4
+

1
2

2
s2 + 4

G(s) (21.13)

Then, we obtain

y(t) = L−1[Y (s)] = 3 cos 2t− 1
2 sin 2t+ 1

2

∫ t

0
sin 2(t− u) g(u) du

(21.14)

If a specific forcing function g is given, then the integral in Eq.(??)

can be evaluated (by numerical means, if necessary).

Solution, Transfer Function

If we denote L [y(t)] = Y (s). Then we have

L
[
y′(t)

]
= sY (s)− y(0)
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and

L
[
y′′(t)

]
= s2Y (s)− sy(0)− y′(0). (21.15)

Hence applying Laplace transform on the differential equation

ay′′ + by′ + cy = g(t) (21.16)

after simplification, we obtain

(as2 + bs+ c)Y = (as+ b)y(0) + ay′(0) + L[g(t)].

Hence

Y (s) = [(as+ b)y(0) + ay′(0)]H(s) +G(s)H(s) (21.17)

with

G(s) = L[g(t)]

and

H(s) =
1

as2 + bs+ c
. (21.18)

H(s) is called the transfer function.

We write

Y (s) = Φ(s) + Ψ(s)

where

Φ(s) =
(as+ b) y(0) + ay′(0)

as2 + bs+ c



21.1. CONVOLUTION AND INTEGRAL EQUATIONS 375

and

Ψ(s) =
G(s)

as2 + bs+ c
.

Then

y(t) = φ(t) + ψ(t)

where

φ(t) = L−1[Φ(s)]

and

ψ(t) = L−1[Ψ(s)].

Special Case 1:

If g(t) = 0 in (21.16), we have

ay′′ + by′ + cy = 0.

This together with the initial conditions y = (0) = y0 and y′(0) =

y′0 give the solution

y(t)= φ(t) = L−1

[
(as+ b) y0 + ay′0
as2 + bs+ c

]
.

Special case 2:

If (21.16) is together with the initial conditions y(0) = 0 andy′(0) =
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0, then solution is

y(t) = ψ(t) = L−1

[
G(s)

ab2 + bs+ c

]
= L−1[H(s)G(s)]

=
∫ t

0
h(t− u)g(u)du (21.19)

Special Case 2a:

If (21.16) is together with the initial conditions y(0) = 0 and

y′(0) = 0, and when G(s) = 1, then

g(t) = L−1[G(s)] = L−1[1]

= δ(t), the Dirac-delta function, since L[δ(t)] = 1.

Hence

ψ(s) = H(s).

i.e., y = h(t) is the solution of the initial value problem

ay′′ + by′ + cy = δ(t), y(0) = 0, y′(0) = 0.

h(t) is called the impulse response of the system.

Example 6 Solve the initial value problem

y′′ + 3y′ + 2y = g(t)

where g(t) =

{
1, if 1 < t < 2

0, otherwise,
,
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with the initial conditions y(0) = y′(0) = 0.

Solution

Comparing with Eq. (21.16) and using Eq. (21.18), we obtain

H(s) =
1

s2 + 3s+ 2
=

1
s+ 1

− 1
s+ 2

and hence

h(t) = L−1[H(s)] = L−1

[
1

s+ 1
− 1
s+ 2

]
= e−t − e−2t.

Hence

y = ψ(t) = L−1[H(s)G(s)] =
∫ t

0
h(t− τ)g(τ)dτ

We are given with g(t) = 1 if 1 < t < 2 and 0 elsewhere. Hence

three cases arise.

Case 1: If t < 1,

y = ψ(t) =
∫ t

0
h(t− τ)g(τ)dt

=
∫ t

0
h(t− τ)× 0× dt = 0.

Case 2: If 1 < t < 2, we have to integrate from 1 to t. This gives

y = ψ(t) =
∫ t

1
h(t− τ)g(τ)dτ
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=
∫ t

1
[e−(t−τ) − e−2(t−τ)]dτ =

[
e−(t−τ) − 1

2
e−2(t−τ)

]t

1

= e−0 − e−(t−1) − 1
2
(e−0 − e−2(t−1)) =

1
2
− e−(t−1) +

1
2
e−2(t−1)

Case 3: If t > 2, we have to integrate from 1 to 2 only (not to t).

This gives

y = ψ(t) =
∫ 2

1
h(t− τ)g(τ)dτ

=
∫ 2

1
[e−(t−τ) − e−2(t−τ)]dτ =

[
e−(t−τ) − 1

2
e−2(t−τ)

]2

1

= e−(t−2) − e−(t−1) − 1
2
[e−2(t−2) − e−2(t−1)].

Integral Equations

Convolution helps in solving certain integral equations, that

is, equations in which the unknown function y(t) appears under

the integral (and perhaps also outside of it). We solve an integral

equation in which integral is of the form of a convolution.

Example 7 Solve the integral equation

y(t) = t+
∫ t

0
y(τ) sin (t− τ) dτ

Solution

Step 1: By observation it can be seen that the integral is of the

form of a convolution. Hence we write the given equation as

y = t+ y ∗ sin t. (21.20)
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Step 2: We write Y = L(y). By an application of Convolution

Theorem taking f(t) = y(t) and g(t) = sin t, we have

L [y ∗ sin t] =L [(f ∗ g)(t)] = F (s)G(s) = L [y(t)] L [sin t] = Y (s)
1

s2 + 1
.

Hence applying Laplace transform, (21.20) becomes

Y (s) =
1
s2

+ Y (s)
1

s2 + 1
.

Solving for Y (s), we obtain

Y (s) =
s2 + 1
s4

=
1
s2

+
1
s4
.

Step 3: Taking the inverse transform, we obtain

Y (t) = t+
1
6
t3.

Example 8 Solve

y(t) = t3 +
∫ t

0
sin(t− u)y(u)du

Solution

Using convolution,

L

[∫ t

0
sin(t− u)y(u)du

]
= L[sin t]L[y(t)].
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Hence by applying L on the given integral equation, we get

L[y(t)] = L[t3] + L[sin t]L[y(t)].

Hence,

L[y(t)]{1− L[sin t] } = L[t3]

or

L [y(t)] =
L [t3]

1− L[sin t]
=

3!/s4

1− 1/(s2 + 1)

=
3!
s4

(
s2 + 1
s2

)
=

3!
s4

+
3!
s6
,

so

y(t) = L−1

[
3!
s4

+
3!
s6

]
= t3 +

1
20
t5

is the solution of the given integral equation.



Chapter 22
Two Point Boundary Value

Problems

22.1 Two Point Boundary Value Problems

Since the general solution to a second order differential equation

y′′ + p(x)y′ + q(x)y = g(x) (22.1)

contains two arbitrary constants, we need two conditions for ob-

taining a particular solution. Some times the two conditions are

of the type

y(α) = y0, y(β) = y1. (22.2)

The conditions in (22.2) are called boundary conditions since

they refer to the boundary points α , β of an interval I. Eq. (22.1)

381
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and conditions (22.2) together constitute what is known as

a boundary value problem.

If the function g has the value zero for each x, and if the

boundary values y0 and y1 are also zero, then the problem (22.1)

with conditions (22.2) is called homogeneous. Otherwise, the

problem is nonhomogeneous.

Remark The solution of a boundary value problem given by equa-

tions (22.1) and (22.2) is unique if and only if no nonzero solution

y of (22.1) satisfies y(A) = y(B) = 0.

Example 1 (Boundary Value Problem) Solve

y′′ + 2y = 0, y(0) = 1, y(π) = 0.

Solution

The general solution to the given differential equation is

y = c1 cos
√

2x+ c2 sin
√

2x.

Using the first of boundary conditions, we obtain

y(0) = c1 = 1.

The second boundary condition implies that

c1 cos
√

2π + c2 sin
√

2π = 0,

so c2 = − cot
√

2π. Thus the solution of the given boundary value
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problem is

y = cos
√

2x− cot
√

2π sin
√

2x.

Example 2 (Boundary Value Problem) Solve

y′′ + y = 0, y(0) = 1, y(π) = a.

Solution

The general solution is given by

y = c1 cosx+ c2 sinx.

Using the first of the boundary conditions we have

y(0) = c1 = 1.

The second boundary condition gives

y(π) = −c1 = a.

These two conditions on c1are incompatible if a 6= −1, so the

problem has no solution in that case. However, if a = −1, then

both boundary conditions are satisfied provided that c1 = 1, where

c2 is still arbitrary.

In this case a solution to the given boundary value problem is

y = 3 cosx+ c2 sinx,
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where c2 is still arbitrary. This example illustrates that a homoge-

neous boundary value problem may have no solution, and also that

under special circumstances it may have infinitely many solutions.

Example 3 Solve the boundary value problem

y′′ + 2y = 0, y(0) = 0, y(π) = 0.

Solution

The general solution is given by

y = c1 cos
√

2x+ c2 sin
√

2x.

The first boundary condition requires that c1 = 0. The second

boundary condition gives c2 sin
√

2π = 0. Since sin
√

2π 6= 0 we

must have c2 = 0. Consequently, y = 0 for all x is the only solution

of the given boundary value problem. This example illustrates that

a homogeneous boundary value problem may have only the trivial

solution y = 0.

Example 4 Solve the boundary value problem

y′′ + y = 0, y(0) = 0, y(π) = 0.

Solution

The general solution is given by

y = c1 cosx+ c2 sinx.
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The first boundary condition requires that c1 = 0. The second

boundary condition is also satisfied when c1 = 0 regardless the

value of c2. Thus the solution of the given boundary value problem

is

y = c2 sinx,

where c2 is still arbitrary. This example illustrates that a homoge-

neous boundary value problem may have infinitely many solutions.

22.2 Eigen Value Problems

Consider the boundary value problem

y′′ + λy = 0, (22.3)

with the boundary conditions

y(0) = 0, y(π) = 0. (22.4)

We define eigen values and eigen functions as follows:

Definition The values of λ for which nontrivial solutions of (22.3)

and (22.4) occur are called eigen values, and the corresponding

nontrivial solutions are called eigen functions.

Example 5 Discuss whether λ = 1 is an eigen value of the bound-

ary value problem (22.3) and (22.4). Give some eigen functions.

Is λ = 2 an eigen value?

Solution
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Observe that the above boundary value problem (22.3) and

(22.4) is the same as the problems in Examples 3 and 4 if λ = 2

and λ = 1, respectively.

• Referring to Example 4, we note that for λ = 1 Eqs.(22.3)

and (22.4) have the solution

y = c2 sinx,

where c2 is an arbitrary constant. This shows that for λ = 1

Eqs.(22.3) and (22.4) have nontrivial solution. Hence λ = 1

is an eigen value. Any nonzero multiple of sinx is an eigen

function corresponding the eigen value λ = 1.

• Referring to Example 3, we note that for λ = 2 Eqs.(22.3)

and (22.4) have only the trivial solution y = 0. Hence λ = 2

is not an eigen value.

Example 6 Find all the eigen values and eigen functions of the

boundary value problem

y′′ + λy = 0, (22.5)

with the boundary conditions

y(0) = 0, y(π) = 0. (22.6)

Solution
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Case 1) If λ = 0, then (22.5) becomes

y′′ = 0.

Integrating (with respect to x ),

y′ = a,

where a is an arbitrary constant. One more integration (with

respect to x ) yields

y = y(x) = ax+ b,

where b is also an arbitrary constant.

By (22.6), y(0) = 0, and hence the above implies b = 0. Hence the

above reduces to

y = y(x) = ax.

Again by (22.6), y(π) = 0, hence the above implies aπ = 0 which

implies a = 0. Hence the above reduces to

y = y(x) = 0.

Hence we have only trivial solution when λ = 0. Hence 0 is not an

eigen value.

Case 2) If λ > 0, say λ = µ2, then (22.5) becomes

y′′ + µ2y = 0,
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and the characteristic equation corresponding to this second order

ordinary differential equation is

λ2 + µ2 = 0

i.e., λ2 = −µ2.

Hence the general solution of is

y(x) = A cosµx+B sinµx.

From the boundary condition in (22.6), it follows that

y(0) = A = 0 .

Hence

y(x) = B sinµx.

Again by (22.6),

y(π) = B sinµπ = 0.

Two cases arise: either B = 0 or sinµπ = 0.

The case of B = 0 leads to y(x) = 0 for 0 ≤ x ≤ π, which is the

trivial solution. As we are seeking for nontrivial solutions, we take

B 6= 0. Then

sinµπ = 0.

Since sine function has the value zero at every integer multiple of
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π, the above implies

µπ = nπ , n = 1, 2, 3, . . .

or

µ = n , n = 1, 2, 3, . . . .

Hence the corresponding values of λ are given by

λ = µ2 = n2 , n = 1, 2, 3, . . . .

Hence

λ1 = 1, λ2 = 4, λ3 = 9, . . . , λn = n2, . . .

are eigen values of the problem. Since the nontrivial solutions are

obtained from

y(x) = B sinµx = B sin
√
λx,

eigen functions corresponding to the eigen value λn = n2 (n =

1, 2, 3, . . .) are multiples of the functions sinnx(n = 1, 2, 3, . . .).

We will usually choose the multiplicative constant to be 1 and

write the eigen functions as

y1(x) = sinx, y2(x) = sin 2x, y3(x) = sin 3x, . . . , yn(x) = sinnx, . . . ,

noting that multiples of these functions are also eigen functions.
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Case 3) If λ < 0, say λ = −µ2, then (22.5) becomes

y′′ − µ2y = 0,

and the characteristic equation corresponding to this second order

ordinary differential equation is

λ2 − µ2 = 0

i.e., λ2 = µ2 ⇒ λ = ±µ.

Hence the general solution is

y(x) = Aeµx +Be−µx.

For the convenience of applying boundary conditions, recalling

the definitions of hyperbolic sine and cosine functions, we write

the above general solution as

y(x) = c1 coshµx+ c2 sinhµx.

By (22.6), y(0) = 0, and hence the above implies

c1 = 0.

Thus

y(x) = c2 sinhµx.
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Also by (22.6), y(π) = 0, and hence the above implies

c2 sinhµπ = 0.

Since µ 6= 0, sinhµπ 6= 0, hence we must have c2 = 0.

Hence

y(x) = 0.

Hence we have only trivial solution when λ < 0. Hence any λ <0

is not an eigen value.

We conclude that the boundary value problem (22.5) and (22.6)has

an infinite sequence of positive eigen values

λn = n2 for n = 1, 2, 3, . . .

and that the corresponding eigen functions are proportional to

sinnx. Further, there are no other real eigen values. There remains

the possibility that there might be some complex eigen values. We

mention (without proving) that the problem (22.3) and (22.4) have

no other complex eigen values.

Example 7 Find all the eigen values and eigen functions of the

boundary value problem

y′′ + λy = 0, (22.7)

with the boundary conditions

y(0) = 0, y(L) = 0. (22.8)
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Solution

Proceeding as in the previous example, it can be seen that the

boundary value problem (22.7) and (22.8) has an infinite sequence

of positive eigen values

λn = n2π2

L2 for n = 1, 2, 3, . . .

and that the corresponding eigen functions are given by

yn(x) = sin nπx
L for n = 1, 2, 3, . . .

Exercises

In Exercises 1-3 solve the following boundary value problems (A

basis of solution is given in the bracket).

1. y′′ − 16y = 0; y(0) = 3, y(1
4) = 3e(e4x, e−4x)

2. y′′ + y′ − 2y = 0; y(0) = 0, y(1) = e− e−2(ex, e−2x)

3. y′′ − 2y′ = 0; y(0) = −1, y(1
2) = e− 2(1, e2x)

In Exercises 4-9 either solve the given boundary value prob-

lem or else show that it has no solution.

4. y′′ + y = 0; y(0) = 0, y(π) = 2

5. y′′ + 2y = 0; y(0) = 1, y(π) = 0

6. y′′ + 4y = cosx; y(0) = 0, y(π) = 0

7. y′′ + 4y = sinx; y(0) = 0, y(π) = 0

8. x2y′′ − 2xy′ + 2y = 0; y(1) = −1, y(2) = 1

9. x2y′′ + 3xy′ + y = x2; y(1) = 0, y(e) = 0

Answers
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1. y = 3e4x

2. y = ex − 2e−2x

3. y = −2 + e2x

4. y = −2 sinx

5. y = 1√
2
(cot

√
2π cos

√
2x+

sin
√

2x)

6. No solution

7. y = c2 sin 2x+ 1
3 sinx

8. y = −5
2x+ 3

2x
2

9. y = −1
9x

−1 + 1
9(1 −

e3)x−1 lnx+ 1
9x

2



Chapter 23
Fourier Series of Periodic

Functions

23.1 Introduction

Periodic functions frequently occur in Engineering problems. If

these functions be represented in terms of simple periodic func-

tions such as sine and cosine series, then it is of great practical

importance. The French physicist Joseph Fourier (1768 - 1830)

showed in 1807 that an arbitrary periodic function could be ex-

pressed as a linear combination of sines and cosines. These linear

combinations are called Fourier series.

In this chapter we discuss basic concepts, facts and techniques in

connection with Fourier series. In certain sense these series are

more universal than Taylor series. Many discontinuous periodic

394
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functions of practical interest can be developed in Fourier series

but not in Taylor series.

23.2 Periodic Functions

Definitions A function f(x) is said to be periodic if it is defined

for all real x and if there is a positive number L such that

f(x+ L) = f(x)

for every real x.

The number L is called a period of f . The smallest of such

L > 0 (if it exists) is called the primitive period or fundamen-

tal period of f .

Remark If f(x+ L) = f(x) for every real number x,

then it follows that

f(x+ nL) = f(x)

for every real number x and for any positive integer n.

Examples

1. The primitive period of sin x is 2π, because

sin(x+ 2π) = sinx ∀ x ∈ R

and 2π is the smallest such positive number. Similarly, the

primitive period of cos x is 2π.
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2. The primitive period of sin 2x is π, because

sin 2 (x+ π) = sin(2x+ 2π) = sin 2x ∀ x ∈ R

and π is the smallest such positive number. Similarly, prim-

itive period of cos 2x is π.

3. The primitive period of sin 3x is 2π
3 .

4. The primitive period of sin 2π x is 1, because

sin 2π (x+ 1) = sin(2πx+ 2π) = sin 2π x ∀ x ∈ R

and 1 is the smallest such positive number. Similarly, the

primitive period of cos 2π x is 1.

5. The primitive period of sinπ x and cosπ x is 2.

Examples of periodic functions without primitive periods

The following are some examples of periodic functions without

primitive periods.:

1. f(x) = k, for every real x, where k is a constant is a periodic

function, and any positive real number is a period. But f

has no primitive period.

2. f defined by

f(x) =

{
1, whenx is rational

0, whenx is irrational
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is a periodic function, any positive rational number is a pe-

riod. But f has no primitive period.

Attention! Hereinafter we use the term period for primitive

period. i.e., L is the period of f(x) if L is the smallest positive

number for which

f(x+ L) = f(x) for every real x.

Exercises

In Exercises 1-6, determine whether the given function is periodic.

If so, find its fundamental period.

1. sin 7x

2. cos 4πx

3. sinh 2x

4. sin πx
L

5. tanπx

6. x3

7. f(x) =

{
2, 2n− 1 ≤ x < 2n

3, 2n ≤ x < 2n+ 1
n = 0, ±1, ±2, . . .

8.

f(x) =

{
1, 2n− 2 ≤ x < 2n

(−1)n, 2n ≤ x < 2n+ 2
n = 0, ±1, ±2, . . .

Answers

1. L = 2π
7

2. L = 1
2

3. Not periodic

4. L = 2L

5. L = 1

6. Not periodic
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7. L = 2 8. L = 4

23.3 Trigonometric Series

Definition A series of the form

a0 + a1 cosx+ b1 sinx+ a2 cos 2x+ b2 sin 2x+ · · ·

+an cosnx+ bn sinnx+ · · · ,

where a0, a1, b1, . . . , an, bn, . . . are real constants is called

a trigonometric series. Here an’s and bn’s are the coefficients

of the series.

Fourier Series of 2L Periodic Functions

The Fourier series of 2L periodic function f(x) initially defined

over the interval −L < x < L is given by the Fourier series

f(x) =
a0

2
+

∞∑
n=1

(
an cos n π x

L + bn sin n π x
L

)
(23.1)

where the coefficients are given by the Euler formulae1

a0 =
1
L

∫ L

−L
f(x)dx (23.2)

1Determination of Euler coefficients are done at the end section of this
chapter.
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an =
1
L

∫ L

−L
f(x) cos n π x

L dx, n = 1, 2, 3, . . . (23.3)

bn =
1
L

∫ L

−L
f(x) sin n π x

L dx, n = 1, 2, 3, . . . (23.4)

Theorem 1 (The Fourier Convergence Theorem:

Convergence and Sum of Fourier Series)

Suppose that f and f ′ are piecewise continuous on the inter-

val −L ≤ x < L. Further, suppose that f is defined outside the

interval −L ≤ x < L so that it is periodic with period 2L. Then

f has a Fourier series

a0

2
+

∞∑
n=1

(
an cos n π x

L + bn sin n π x
L

)
... (23.5)

whose coefficients are given by Eqs. (23.2)-(23.4). The Fourier

series converges to f(x) at all points where f is continuous, and

converges to f(x−)+f(x+)
2 at all points where f is discontinuous.

That is,

1. If x is a point of continuity, then the sum of the series in

(23.5) is f(x). i.e., at the point of continuity

f(x) =
a0

2
+

∞∑
n=1

(
an cos n π x

L + bn sin n π x
L

)
. (23.6)
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2. If x is a point of discontinuity, then the sum of the series in

(23.6) is the average of left and right hand limits at x. i.e.,

at the point of discontinuity

f(x−) + f(x+)
2

=
a0

2
+

∞∑
n=1

(
an cos n π x

L + bn sin n π x
L

)
.

(23.7)

Example 1 Find the Fourier series for the 2-periodic function

f(x) =

{
0, when − 1 < x < 0

1, when 0 < x < 1

Solution

Step 1: Here period is 2L = 2. ... L = 1. Substituting L = 1 in

formulae (23.1) to (23.4), we obtain

f(x) =
a0

2
+

∞∑
n=1

(an cosnπ x+ bn sinnπ x) (23.8)

a0 =
∫ 1

−1
f(x)dx (23.9)

an =
∫ 1

−1
f(x) cosnπ x dx, n = 1, 2, 3, . . . (23.10)

bn =
∫ 1

−1
f(x) sinnπ x dx, n = 1, 2, 3, . . . (23.11)
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Step 2: Determination Fourier coefficients using (23.9) to (23.11):

a0 =
∫ 0

−1
0 · dx+

∫ 1

0
dx =

∫ 1

0
dx = 1.

an =
∫ 0

−1
0 · cosnπ x dx+

∫ 1

0
1 · cosnπ x dx

=
[
sinnπx
nπ

]1

0

= 0.

bn =
∫ 0

−1
0 · sinnπ x dx+

∫ 1

0
1 · sinnπ x dx

=
[
−cosnπ x

nπ

]1
0

=
1
nπ

{− cosnπ + 1} =
1
nπ

{1− (−1)n}

...bn =

{
0 , when n is even

2
n π , when n is odd

Step 3: Substituting the above values in (23.8), we obtain the

Fourier series

f(x) =
1
2

+
2
π

[
sinπx

1
+

sin 3πx
3

+ . . .

]
.

Example 2 Find the Fourier series of the function

f(t) =


0,when −2<t<−1

k,when − 1 < t < 1

0,when 1<t<2
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with period 4.

Solution

Step 1: Here period is 2L = 4. ... L = 2. Substituting L = 2

in formulae (23.1) to (2c) and also changing the variable to t, we

obtain

f(t) =
a0

2
+

∞∑
n=1

(
an cos

nπ t

2
+ bn sin

nπ t

2

)
(23.12)

a0 =
1
2

∫ 2

−2
f(t)dt (23.13)

an =
1
2

∫ 2

−2
f(t) cos

nπ t

2
dt, n = 1, 2, 3, . . . (23.14)

bn =
1
2

∫ 2

−2
f(t) sin

nπ t

2
dt, n = 1, 2, 3, . . . (23.15)

Step 2: Determination Fourier coefficients using (23.13) to (23.15):

a0 =
1
2

{∫ −1

−2
0 · dt+

∫ 1

−1
k · dt +

∫ 2

1
0 · dt

}

=
k

2

∫ 1

−1
dt =

k

2
[t] 1
−1 = k.

an =
1
2

∫ 1

− 1
k . cos

nπ t

2
dt =

k

2

∫ 1

− 1
cos

nπ t

2
dt

= k
2 × 2

∫ 1
0 cos n π t

2 dt , as cosine functions are even and hence
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∫ 1
−1 cos n π t

2 dt = 2
∫ 1
0 cos n π t

2 dt.

= k

[
sin n π t

2
n π
2

]
=

2k
nπ

sin
nπ

2

an =


0 , when n is even

2k
n π , when n = 1 , 5 , 9 ,

− 2k
n π , when n = 3 , 7 , 11 ,

bn =
1
2

∫ 1

−1
k sin

nπ t

2
dt =

k

2

∫ 1

−1
sin

nπ t

2
dt

= 0 for every n , since sine functions are odd and hence∫ 1
−1 sin n π t

2 dt = 0.

Step 3: Substituting the above values in (23.12), we obtain the

Fourier series

f(t) =
k

2
+

2k
π

[
cos

π t

2
− 1

3
cos

3π t
2

+
1
5

cos
5π t
2

− . . .

]
Exercises Set A

In each of the following, find the Fourier series of the periodic

function f(t), of period 2L.

1. f(t) =

{
0, −2 < t < 0

1, 0 < t < 2
, 2L = 4.

2. f(t) =

{
0, −1 < t < 0

t, 0 < t < 1
, 2L = 2.
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3. f(t) =

{
−1, −1 < t < 0

2t, 0 < t < 1
, 2L = 2

4. Represent f(x) =

{
0, −l ≤ x ≤ 0

1, 0 < x ≤ l
as a Fourier series in

the range [−l, l].

5. Find the Fourier series of f(x) =

{
0, −2 ≤ x < 0

k, 0 ≤ x < 2
given that f(x) has period 4.

6. Find the Fourier series of f(x) =

{
2, −2 ≤ x < 0

x, 0 ≤ x < 2
in

(−2, 2) .

7. Find the Fourier series of f(x) =

{
−x, −2 ≤ x < 0

x, 0 ≤ x < 2
with f(x+ 4) = f(x).

8. Find the Fourier series of the function

f(t) =


0,when −3<t<−1

1,when − 1 < t < 1

0,when 1<t<3

with period 6. In Exercises 9-10 , find the Fourier series for

the given function.

9. f(x) =

{
1, −L ≤ x < 0

0, 0 ≤ x < L
; f(x+ 2L) = f(x)
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10. f(x) =

{
x+ 1, −1 ≤ x < 0

1− x, 0 ≤ x < 1
; f(x+ 2) = f(x)

Answers to Exercises Set A

1. 1
2 + 2

π

[
sin π t

2 + 1
3 sin 3π t

2 + 1
5 sin 5π t

2 + . . .
]

2. 1
4−

2
π2

[
cosπ t+ 1

9 sin 3π t+ · · ·
]
+ 1

π

[
sinπ t− 1

2 sin 2π t+ · · ·
]

3. 1− 4
π2

[
cosπ t+ 1

9 cos 3π t− · · ·
]
+ 2

π

[
2 sinπ t− 1

2 sin 2π t+ . . .
]

4. 1
2 + 2

π

∑∞
n=1

sin
2n+1πx

l
2n+1 .

5. k
2 + 2k

π

[
sin πx

2 + 1
3 sin 3πx

2 + 1
5 sin 5πx

2 + · · ·
]

6. 3
2 −

4
π2

∑∞
n=1

cos nx
n2 − 2

π

∑∞
n=1

sin nx
n .

7. 1− 8
π2

∑∞
n=1

cos(2n−1)πx/2
(2n−1)2

8. 1
3 +

∑∞
n=1

2
nπ sin nπ

3 cos nπx
3 or 1

3 +
√

3
π

∑∞
n=1 cos nπx

3

9. 1
2 −

2
π

∑∞
n=1

sin[(2n−1)πx/L]
2n−1

10. 1
2 + 4

π2

∑∞
n=1

cos(2n−1)πx
(2n−1)2

Exercises Set B

1. Find the Fourier series of the function f(t) = t2 on (−l, l), L =

2l.

2. Find the Fourier series of the function f(t) = t on (−l, l), L =

2l.



406 CHAPTER 23. FOURIER SERIES

3. Find the Fourier series of f(t) =

{
−1, −1 < t < 0

1, 0 < t < 1
,

with period 2L = 2.

4. f(t) = 1− t2, −1 < t < 1, with period 2L = 2.

5. If f(x) = −x, −L < x < L and if f(x+2L) = f(x), find

a formula for f(x)

(a). in the interval L < x < 2L.

(b). in the interval −3L < x < −2L.

6. If f(x) =

{
x+ 1, −1 < x < 0

x, 0 < x < 1
and if f(x+2) = f(x),

find a formula for f(x)

(a). in the interval 1 < x < 2. (b) in the interval 8 < x <

9.

Answers to Exercises Set B

1. a0 = 2l2

3 , an = 4(−1)nl2

n2π2 , and the Fourier series is

f(t) =
l2

3
+

4l2

π2

[
− cosπt+

1
22

cos 2πt− 1
32

cos 3πt+ · · ·
]

2. bn = −2(−1)nl2

nπ , and f(t) = 2l2

π

[
sinπt− sin 2πt

2 + · · ·
]

3. 4
π

[
sinπ t+ 1

3 sin 3π t+ 1
5 sin 5π t+ 1

7 sin 7π t+ . . .
]

4. 2
3 + 4

π2

[
cosπ t− 1

4 cos 2π t+ 1
9 cos 3π t− . . .

]
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5. (a). f(x) = 2L− x in L < x < 2L

(b). f(x) = −2L− x in −3L < x < −2L

6. (a). f(x) = x− 1 in 1 < x < 2

(b). f(x) = x− 8 in 8 < x < 9

23.4 Fourier series of 2π periodic function

defined over the interval [−π, π]

We now consider the special case when 2L = 2π. That is, we

consider the case when the function is 2π periodic and initially

defined over [−π, π].

Suppose f(x) be defined over the interval [−π, π] and be a

periodic function with period 2π, so that f(x) is defined over the

set of real numbers. Then the Fourier series of f(x) is given by

the trigonometric series

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) (23.16)

where the coefficients an’s and bn’s are determined by the Euler

formulae:

a0 =
1
π

∫ π

−π
f (x) dx (23.17)

an =
1
π

∫ π

−π
f (x) cosnx dx, n = 1, 2, 3, . . . (23.18)
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bn =
1
π

∫ π

−π
f (x) sinnx dx, n = 1, 2, 3, . . . (23.19)

The series given in (23.16) is called the Fourier series corre-

sponding to f(x) and its coefficients obtained by the Euler for-

mulae (2a)− (2c) are called the Fourier coefficients of f(x).

Theorem 2 (Convergence and Sum of Fourier Series) If a

periodic function f(x) with period 2π is piecewise continuous in

the interval –π ≤ x ≤ π and has a left and right hand derivatives

at each point of that interval, then the Fourier series (23.16) of

f(x) is convergent. Also,

1. If x is a point of continuity, then the sum of the series in

(23.16) is f(x). i.e., at the point of continuity

f(x) =
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) (23.20)

2. If x is a point of discontinuity, then the sum of the series in

(23.20) is the average of left and right hand limits at x. i.e.,

at the point of discontinuity

f(x−) + f(x+)
2

=
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) . (23.21)

Example 3 (Square wave) Find the Fourier series of f given by

f(x) =

{
−k, when − π < x < 0

k, when 0 < x < π
and f(x+ 2π) = f(x)
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and hence deduce the Madhav-Gregory series

π

4
= 1− 1

3
− 1

5
− · · · .

Solution

The given function is defined over the interval [−π, π] . It is

also given that f(x + 2π) = f(x) . i.e., the given function f(x) is

of period 2π.

Step 1: Determination of Fourier coefficients using Euler formulae

(2a)-2(c):

a0 =
1
π

∫ π

−π
f(x)dx =

1
π

∫ 0

−π
(−k) dx+

1
π

∫ π

0
k dx

=
−k
π

[x] 0
−π +

k

π
[x]π0 =

−kπ
π

+
kπ

π
= 0.

an =
1
π

∫ π

−π
f(x) cosnx dx =

1
π

∫ 0

−π
(−k) cosnx dx+

1
π

∫ π

0
k cosnx dx

=
−k
π

[
sinnx
n

] 0

−π

+
k

π

[
sinnx
n

]π

0

= 0

bn =
1
π

∫ π

−π
f(x) sinnx dx =

1
π

∫ 0

−π
(−k) sinnx dx+

1
π

∫ π

0
k sinnx dx

=
−k
π

[
−cosnx

n

] 0

−π
+
k

π

[
−cosnx

n

]π
0

=
2k
nπ

(1− cosnπ)

=
2k
nπ

(1− (−1)n) .
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...bn =

{
0, when n is even
4k
nπ , when n is odd

In particular,

b1 =
4k
π
, b2 = 0, b3 =

4k
3π
, , b4 = 0, b5 =

4k
5π
, . . .

Step 2: The Fourier series of f(x) is obtained by putting the

coefficients obtained in Step 1 in Eq., and it is

4k
π

[
sinx+

sin 3x
3

+
sin 5x

5
+ . . .

]
(23.22)

Step 3: Deduction of the Madhav-Gregory series:

Using Theorem 2 at the point of continuity the series in (23.22)

converges to f(x). In other words, at the point of continuity the

sum of the series (23.22) is f(x). That is, at the point of continuity

f(x) =
4k
π

[
sinx+

sin 3x
3

+
sin 5x

5
+ . . .

]
. (23.23)

f(x) is continuous at x = π
2 . Hence, by (23.23)

f
(

π
2

)
=

4k
π

[
sin π

2 +
sin 3π

2

3
+

sin 5π
2

5
+ . . .

]
(23.24)

By the definition of f, f(π
2 ) = k. and by substituting

sin π
2 = 1, sin 3π

2 = −1, sin 5π
2 = 1, . . . in (23.24),

k =
4k
π

[
1− 1

3
+

1
5
− . . .

]
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Hence
π

4
= 1− 1

3
+

1
5
− . . .

Example 4 (Square wave) Consider the 2π periodic function in

Example 3. Justify Theorem 2 at the point x = 0.

Solution

The function f defined by

f(x) =

{
−k, when − π < x < 0

k, when 0 < x < π
and f(x+ 2π) = f(x)

has a jump discontinuity at x = 0. Hence by Theorem 2,

f(0−) + f(0+)
2

=
a0

2
+

∞∑
n=1

(an cosn0 + bn sinn0) . (23.25)

By Example 3, a0 = 0, an = 0 (for n = 1, 2, . . .), and also

sinn0 = 0(for n = 1, 2, ...). Hence RHS of (23.25) is 0. Also,

f(0−) = lim
x→0−

f(x) = −k and f(0+) = lim
x→0+

f(x) = k hence LHS

of (23.25) also is 0. Hence Theorem 2 is verified.

Example 5 Find the Fourier series expansion for x2 in −π ≤ x ≤
π.

Hence deduce that

1. 1− 1
22 + 1

32 − 1
42 + 1

52 − . . . = π2

12 .

2. 1 + 1
22 + 1

32 + 1
42 + 1

52 + . . . = π2

6 .

3. 1 + 1
32 + 1

52 + . . . = π2

8 .

Solution We postpone the solution of this example to the next

chapter “Fourier Series Even and Odd Functions.”
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Example 6 Find the Fourier series of the function

f(x) =

{
x+ x2

π2

−π < x < π

when x = ±π

Deduce that 1 + 1
22 + 1

32 + . . . = π2

6 .

Solution

Step 1: Using the Euler’ formulae (2a)-(2b), we obtain

a0 = 1
π

∫ π
−π

(
x+ x2

)
dx = 2π2

3 , on simplification

an =
1
π

∫ π

−π

(
x+ x2

)︸ ︷︷ ︸
u

cosnx︸ ︷︷ ︸
v′

dx

Using integration by parts,∫
uv′ = uv −

∫
u′v,

and on simplification, we obtain

an =

{
4
n2 ,

− 4
n2 ,

if n is even

if n is odd

bn =
1
π

∫ π

−π

(
x+ x2

)︸ ︷︷ ︸
u

sinnx︸ ︷︷ ︸
v′

dx

=

{
− 2

n ,
2
n ,

if n is even

if n is odd
, on simplification.
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Step 2: Hence, the Fourier series of f(x) is

π2

3
+

∞∑
n=1

[
4 (−1)n

n2
cosnx+

2
n

(−1)n+1 sinnx
]

i.e., the Fourier series is

π2

3
− 4

[
cosx− cos 2x

22
+

cos 3x
32

− cos 4x
42

+ . . .

]

+2
[
sinx− sin 2x

2
+

sin 3x
3

− sin 4x
4

+ . . .

]
(23.26)

Step 3: f(x) is discontinuous at x = π. Using Theorem 2,

at the point of discontinuity the series in (23.26) converges to
f(x−)+f(x+)

2 . That is, at the point of discontinuity

f(x−) + f(x+)
2

=
π2

3
−4
[
cosx− cos 2x

22
+

cos 3x
32

− cos 4x
42

+ . . .

]

+2
[
sinx− sin 2x

2
+

sin 3x
3

− sin 4x
4

+ . . .

]
(23.27)

By the definition f(π−) = lim
x→π−

(x+ x2) = π + π2 and by the 2π

periodicity of f,

f(π+) = f(−π+) = lim
x→−π+

(x+ x2) = −π + (−π)2 = −π + π2.

f(π−) + f(π+)
2

=
π + π2 − π + π2

2
= π2.
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Hence, putting x = π, (23.27) gives

π2 =
π2

3
− 4

[
cosπ − cos 2π

22
+

cos 3π
32

− cos 4π
42

+ . . .

]
i.e.,

π2 =
π2

3
− 4

[
−1− 1

22
− 1

32
− 1

42
− . . .

]
The above simplifies to

1 +
1
22

+
1
32

+ . . . =
π2

6
.

Example 7 Find a0 and an if

x+ x2 =
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx)

in −π < x < π with period 2π.

Solution done in the previous example.

Example 8 Find the Fourier series of the function

f(x) =

{
0

π x
4

−π < x ≤ 0

0 < x < π
and f(x+ 2π) = f(x).

Solution

Step 1: Using the Euler’ formulae, we have

a0 = 1
π

∫ π
−π f (x) dx = π2

8 , on simplification

an =
1
π

∫ π

−π
f (x) cosnx dx =

{
0,

− 1
2n2 ,

if n is even

if n is odd
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bn =
1
π

∫ π

−π
f (x) sinnx dx =

{
− π

4n ,
π
4n ,

if n is even

if n is odd

Step 2: The corresponding Fourier series is

π2

16
− 1

2

[
cosx+

cos 3x
32

+
cos 5x

52
+ . . .

]

+
π

4

[
sinx− sin 2x

2
+

sin 3x
3

− sin 4x
4

+ . . .

]
Example 9 Find the Fourier series of f defined by

f(x) = ex in (−π, π) and f(x+ 2π) = f(x).

Solution

Step 1: a0 = 1
π

∫ π
−π f(x)dx= 2 sinh π

π , on simplification

an = 1
π

∫ π
−π f(x) cosnx dx n = 1, 2, . . .

=
2(−1)n sinhπ
π(1 + n2)

bn = −2n(−1)n sinhπ
π(1 + n2)

Step 2: The Fourier series is given by

sinhπ
π

{
1 + 2

∞∑
n = 1

(−1)n

n2 + 1
(cosnx− n sinnx)

}
.

Exercises
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1. Find the Fourier series expansion of

f(x) =

{
−π,
x,

−π < x < 0

0 < x < π

and also deduce that

π2

8
=

1
12

+
1
32

+
1
52

+ · · ·

2. Find the Fourier series expansion of

f (x) =

{
0,

π,

−π < x < 0

0 < x < π
.

3. Obtain the Fourier series expansion of the following function

of period 2π :

f (x) = x− x2, −π < x < π.

Also deduce that

π2

12
=

1
12
− 1

22
+

1
32
− 1

42
+

1
52

+ · · ·

Answers

1. −π
4−

2
π

[
cosx+ cos 3x

32 + cos 5x
52 + · · ·

]
+3 sinx− sin 2x

2 +3 sin 3x
3 −

sin 4x
4 · · ·

2. π
2 + 2

[
sin x

1 + sin 3x
3 + sin 5x

5 + · · ·
]
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3.

x− x2 =
π2

3
+ 4

[
cosx
12

− cos 2x
22

+
cos 3x

32
− · · ·

]

+2
[
sinx

1
− sin 2x

2
+

sin 3x
3

− · · ·
]

23.5 Fourier Series of 2π Periodic Function

defined over any Interval of Length 2π

Suppose the given 2π periodic functionf(x) be defined over any

interval of length 2π , say interval of the form [0, 2π] , [−π
2 ,

3π
2 ] ,

[π
2 ,

5π
2 ] , · · · and even [−π, π] .

The Fourier series of 2π periodic functionf(x) that is defined

over the interval [λ, λ+ 2π]is given by

f(x) =
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) (23.28)

where the coefficients an’s and bn’s are determined by the Euler

formulae:

a0 =
1
π

∫ λ+2π

λ
f(x)dx (23.29)

an =
1
π

∫ λ+2π

λ
f(x) cosnx dx, n = 1, 2, 3, . . . (23.30)
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bn =
1
π

∫ λ+2π

λ
f(x) sinnx dx, n = 1, 2, 3, . . . (23.31)

Example 10 Find the Fourier series of f given by

f(x) =

{
1,

−1,

when − π
2 < x < π

2

when π
2 < x < 3π

2

and f(x) = f(x +

2π).

Solution

Step 1: f(x)is defined over the interval (−π
2 ,

3π
2 ) and since f(x) =

f(x+ 2π), the given function is 2π periodic.

The Fourier series is given by

f(x) =
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx)

where (taking λ = −π
2 in the Euler formulae)

a0 =
1
π

∫ 3π
2

−π
2

f(x)dx =
1
π


∫ 3π

2

−π
2

1 dx+
∫ 3π

2

−π
2

(−1) dx


=

1
π

(π − π) = 0.

an = 1
π

∫ 3π
2

−π
2
f(x) cosnx dx n = 1, 2, 3 , . . .

=
1
π


[
sinnx
n

]π
2

−π
2

−
[
sinnx
n

]3π
2

π
2
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=
1
nπ

{
3 sin

nπ

2
− sin

3nπ
2

}

We note that

sin 3nπ
2 = sin 4nπ−nπ

2 = sin(2nπ − nπ
2 )

= sin 2nπ cos nπ
2 − cos 2nπ sin nπ

2

= − sin nπ
2

Hence

an =
1
nπ

{
3 sin

nπ

2
−
(
− sin

nπ

2

)}
=

4
nπ

sin
nπ

2
.

=


0,

4
nπ ,

− 4
nπ ,

when n is even

when n = 1, 5, . . .

when n = 3, 7, . . .

bn = 1
π

∫ 3π
2

−π
2
f(x) sinnx dx, n = 1, 2, 3 ,. . .

=
1
π


∫ π

2

−π
2

sinnx dx+
∫ 3π

2

π
2

(−1) sinnx dx


=

1
π

{[
−cosnx

n

]π
2

−π
2

+
[cosnx

n

] 3π
2

π
2

}

=
1
nπ

{
− cos

nπ

2
+ cos

−nπ
2

+ cos
3nπ
2

− cos
nπ

2

}
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=
1
nπ

{
− cos

nπ

2
+ cos

3nπ
2

}

We note that

cos 3nπ
2 = cos 4nπ−nπ

2 = cos(2nπ − nπ
2 )

= cos 2nπ cos nπ
2 + sin 2nπ sin nπ

2

= cos nπ
2

Hence

an =
1
nπ

{
cos

nπ

2
− cos

nπ

2

}
= 0.

Step 3: The Fourier series of the given function is

f(x) =
4
π

[
cosx− cos 3x

3
+

cos 5x
5

− . . .

]
.

Example 11 Find the Fourier series of f given by

f(x) = 1
2(π − x) when 0 < x < 2π and f(x) = f(x+ 2π).

Deduce that
π

4
= 1− 1

3
+

1
5
− 1

7
+ . . .

Solution

Step 1: Here f(x) is defined over the interval (0, 2π) and since

f(x+ 2π) = f(x), the given function is 2π periodic.
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The Fourier series is given by

f(x) =
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) ,

where (taking λ = 0 in the Euler formulae)

a0 =
1
π

∫ 2π

0
f(x)dx

an =
1
π

∫ 2π

0
f(x) cosnx dx, n = 1, 2, 3, . . .

bn =
1
π

∫ 2π

0
f(x) sinnx dx, n = 1, 2, 3, . . .

Step 2:

a0 =
1
π

∫ 2π

0
f(x)dx =

1
π

∫ 2π

0

1
2(π − x)dx

= − 1
4π

[
(π − x)2

] 2π

0
= 0.

an =
1
π

∫ 2π

0
f (x) cosnx dx =

1
2π

∫ 2π

0
(π − x)︸ ︷︷ ︸

u

cosnx︸ ︷︷ ︸
v′

dx

=
1
2π

{[
(π − x) sinnx

n

]2π

0

+
∫ 2π

0

sinnx
n

dx

}

= 0, on simplification.

bn =
1
π

∫ 2π

0
f (x) sinnx dx =

1
2π

∫ 2π

0
(π − x)︸ ︷︷ ︸

u

sinnx︸ ︷︷ ︸
v′

dx
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=
1
2π

{[
− (π − x) cosnx

n

]2π

0

+
∫ 2π

0

cosnx
n

dx

}

=
1
n
.

Step 3: Fourier series of the given function is

1
2

(π − x) = sinx+
sin 2x

2
+

sin 3x
3

+ . . .

Putting x = π
2 in the above, we obtain

π

4
= 1− 1

3
+

1
5
− 1

7
+ . . .

Example 12 Find the Fourier series of the function

f(x) = x sinx , 0 < x < 2π

Solution

Here f(x) is defined over the interval [0, 2π] and since f(x) =

f(x+ 2π), the given function is 2π periodic.

Now

a0 =
1
π

∫ 2π

0
f(x)dx =

1
π

∫ 2π

0
x︸︷︷︸
u

sinx︸︷︷︸
v′

dx

=
1
π

{
[x(− cosx)]2π

0 −
∫ 2π

0
(− cosx)dx

}
=

1
π

{
2π(− cos 2π) + [sinx]2π

0

}
=

1
π
{−2π}

= −2.
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an =
1
π

∫ 2π

0
f(x) cosnx dx =

1
π

∫ 2π

0
x sinx cosnx dx

=
1
π

∫ 2π

0
x

[
sin(1 + n)x+ sin(1− n)x

2

]
dx,

since sinA cosB = sin(A+B)+sin(A−B)
2 .

=
1
2π

{∫ 2π

0
x sin(1 + n)xdx+

∫ 2π

0
x sin(1− n)xdx

}

=
1
2π

{[
x · − cos(1 + n)x

1 + n

]2π

0

−
∫ 2π

0

− cos(1 + n)x
1 + n

dx

}

+
1
2π

{[
x · − cos(1− n)x

1− n

]2π

0

−
∫ 2π

0

− cos(1− n)x
1− n

dx

}

=
1
2π

{
2π · − cos(1 + n)2π

1 + n
+
[
sin(1 + n)x

(1 + n)2

]2π

0

}

+
1
2π

{
2π · − cos(1− n)2π

1− n
+
[
sin(1− n)x

(1− n)2

]2π

0

}

=
1
2π

{
−2π
1 + n

}
+

1
2π

{
−2π
1− n

}

= −1
(

1
1 + n

+
1

1− n

)
= − 2

1− n2

By a similar computation, we obtain

bn = 0.
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Step 3: Fourier series of the given function is

f(x) = −1− 2
∞∑
1

cosnx
1− n2

.

Example 13 Find the Fourier series expansion of

f (x) =

{
sinx,

0,

0 < x < π

π < x < 2π
.

Also evaluate the series

1
1 · 3

− 1
3 · 5

+
1

5 · 7
− · · ·

Solution

Steps 1 and 2 (Details left to the exercise):

a0 =
2
π
.

an =

 2
π

[
1

1−n2

]
, when n is even

0, when n is odd

bn =
1
π

∫ 2π

0
f(x) sinnx dx =

1
π

∫ π

0
sinx sinnx dx

=
1
π

∫ π

0

cos(1− n)x− cos(1 + n)x
2

dx... (23.32)

= 1
2π

[
sin(1−n)x

1−n − sin(1+n)x
1+n

]π
0
, provided n 6= 1.
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When n = 1, from (23.32), we have

b1 =
1
π

∫ π

0

cos 0− cos(1 + n)x
2

dx

=
1
2π

[
x− sin(1 + n)x

1 + n

]π

0

= 1
2 , if n = 1.

...bn =

{
1
2 , when n = 1

0, when n 6= 1

Step 3: The Fourier series is

f(x) =
1
π

+
1
2

sinx− 2
π

[
cos 2x
22 − 1

+
cos 4x
42 − 1

+ · · ·
]

(23.33)

Step 4: Evaluation of the series:

The given function is continuous at x = π
2 . Putting x = π

2 in

(23.33) and noting that f(π
2 ) = sin π

2 , we obtain

sin π
2 =

1
π

+
1
2

sin π
2 −

2
π

[
cos(2 · π

2 )
1 · 3

+
cos(4 · π

2 )
3 · 5

+ · · ·
]

i.e.,

1 =
1
π

+
1
2
− 2
π

[
−1
1 · 3

+
1

3 · 5
+ · · ·

]
i.e.,

2
π

[
−1
1 · 3

+
1

3 · 5
+ · · ·

]
=

1
π
− 1

2
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i.e.,
2
π

[
−1
1 · 3

+
1

3 · 5
+ · · ·

]
=

2− π

2π

i.e.,
2
π

[
−1
1 · 3

+
1

3 · 5
+ · · ·

]
=

2− π

2π

i.e.,
−1
1 · 3

+
1

3 · 5
+ · · · =

2− π

4π

i.e.,
1

1 · 3
− 1

3 · 5
+ · · · =

π − 2
4

.

Exercises

In Exercises 1-14, find the Fourier coefficients and the Fourier

series of the given function.

1. f(x) =


−1 ,

1 ,

0,

−π
2 ≤ x < 0

if 0 ≤ x < π
2

if π
2 ≤ x < 3π

2

and f(x+ 2π) = f(x).

2. f(x) =

1, −π
2≤x<

π
2

0,
π
2≤x<

3π
2

and f(x+ 2π) = f(x). Also deduce that

1− 1
3 + 1

5 −
1
7 + ... = π

4 .

3.f(x) = x, 0 ≤ x < 2π, f(x+ 2π) = f(x).

4. f(x) =

{
x,

π − x,

−π
2 ≤ x < π

2
π
2 ≤ x < 3π

2

and f(x+ 2π) = f(x).
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5. f(x) =

−x, when−π
2 ≤ x <

π
2

x, when
π
2 ≤ x <

3π
2

and f(x+ 2π) = f(x).

6. f(x) =

{
x,

2π − x,

0 ≤ x < π

π ≤ x < 2π
and f(x) = f(x + 2π).

Deduce that 1 + 1
32 + 1

52 + · · · = π2

8 .

7.f(x) = x2, 0 ≤ x < 2π, f(x+ 2π) = f(x).

8. Find the Fourier series expansion of

f(x) = (π−x)2

4 , 0 ≤ x < 2π with f(x+ 2π) = f(x).

9. f(x) =

{
a,

−a,
0 ≤ x < π

π ≤ x < 2π
and f(x+ 2π) = f(x).

10. f(x) =

{
x,

0,

0 < x < π

π < x < 2π
and f(x+ 2π) = f(x).

11. f(x) = x(2π − x), x ∈ [0, 2π] and f(x+ 2π) = f(x).

12. f(x) =

{
x(π − x)

−π(π − x)

if 0 < x < π

if π < x < 2π
with f(x+ 2π) =

f(x).

Also deduce that 1− 1
32 + 1

52 − . .. = π3

32 .

13. f(x) =


x,

π − x,

π − 2π,

0 < x < π
2

π
2 < x < 3π

2
3π
2 < x < 2π

with f(x+ 2π) = f(x).

14. f(x) =


a,

0,

a,

0 < x < π
2

π
2 < x < 3π

2
3π
2 < x < 2π

with f(x+ 2π) = f(x).

15. Show that in the range 0 to 2π, the expansion of ex with
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period 2π as Fourier series is

ex =
e2π − 1
π

{
1
2

+
∞∑

n =1

cosnx
n2 + 1

−
∞∑

n =1

n sinnx
n2 + 1

}
.

Answers

1. a0 = 0, an = 0, bn =


2

nπ , when n is odd

0, when n is a multiple of 4
4

nπ , when n is even but not multiple of 4
and the Fourier series is

f(x) =
2
π

[
sinx+

2 sin 2x
2

+
sin 3x

3
+

2 sin 6x
6

+ · · ·
]
.

2. The Fourier series is 1
2 + 1

π

[
2 cosx+ cos 2x+ 2

3 cos 3x+ . . .
]

3. a0 = 2π, an = 0, bn = − 2
n and the Fourier series is

f(x) = π − 2
[
sinx+

sin 2x
2

+
sin 3x

3
+ · · ·

]
.

4. The Fourier series is 4
π

[
sinx− 1

9 sin 3x+ . . .
]

5. an =


0, when n is even

− 2
n , when n = 1, 5, 9, . . .

2
n , when n = 3, 7, 11, . . .

, bn =


0, when n is even

− 4
n2π

, when n = 1, 5, 9, . . .
4

n2π
, when n = 3, 7, 11, . . .

,

a0 = π, and the Fourier series is

f(x) =
π

2
−2
[
cosx− cos 3x

3
+

cos 5x
5

− · · ·
]
− 4
π

[
sinx− sin 3x

32
+

sin 5x
52

− · · ·
]
.
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6. a0 = π, an = 2(−1)n−2
n2π

, bn = 0, and the Fourier series is

f(x) = π
2 −

4
π

[
cosx+ 1

32 cos 3x+ 1
52 cos 5x+ · · ·

]
.

For the deduction, put x = 0.

8. The Fourier series is π2

12

[
cos x
12 + cos 2x

22 + cos 3x
32 + · · ·

]
. For the

deduction, put x = 0.

9. The Fourier series is 4a
π

[
sinx+ sin 3x

3 + sin 5x
5 + · · ·

]
.

10. The Fourier series is π
4 −

2
π

[
cosx+ cos 3x

32 + cos 5x
52 + · · ·

]
+

sinx
1

− sin 2x
2

+
sin 3x

3
− · · ·

11.f(x) =
2π2

3
− 4

[
cosx
12

+
cos 2x

22
+

cos 3x
32

+ · · ·
]

12. 8
π

[
sinx+ sin 3x

32 + sin 5x
52 + · · ·

]
. For the deduction put x =

π
2 .

13.
4
π

[
sinx
12

− sin 3x
32

+
sin 5x

52
− · · ·

]
.

14.
a

2
+

2a
π

[
cosx

1
− cos 3x

3
+

cos 5x
5

− . . .

]

23.6 Determination of Euler coefficients an’s

and bn’s

Before proceeding further we recall some results:

1.
∫ L
−L dx = [x]L−L = 2L

2.
∫ L
−L cos n π x

L dx = 0, where n is an integer.
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3.
∫ L
−L sin n π x

L dx = 0, where n is an integer.

In the following m, n are integers:

4.
∫ L
−L cos m π x

L cos n π x
L dx =

{
0, wherem 6= n

L, wherem = n

5.
∫ L
−L sin m π x

L sin n π x
L dx =

{
0, wherem 6= n

L, wherem = n

6.
∫ L
−L sin m π x

L cos n π x
L dx = 0, for allm, n

Proof

We prove only some results and leaving all other as exercise.

1. When n is an integer,

∫ L

−L
cos n π x

L dx =
[
sin n π x

L
n π
L

]T

−L

=
L

nπ

sinnπ + sinnπ
n

= 0.

2. ∫ L

−L
cos m π x

L cos n π x
L dx

=
1
2

(∫ L

−L
cos (m+ n) π x

L dx+
∫ T

−L
cos (m− n) π x

L dx

)

=

{
0, if m 6= n

L, if m = n

23.6.1 Evaluation of Euler Coefficients

Now we are ready to evaluate the Fourier coefficients:
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(i) Evaluation of a0 :

Integrating both sides of the series

f(x) =
a0

2
+

∞∑
n=1

(
an cos n π x

L + bn sin n π x
L

)
(23.34)

with respect to x and in the range [−L, L],we obtain

∫ L

−L
f (x) dx =

∫ T

−L

(
a0

2
+

∞∑
n=1

(
an cos n π x

L + bn sin n π x
L

))
dx

(23.35)

If term-by-term integration of the series is allowed (this is jus-

tified, for instance, in the case of uniformly convergent series of

functions we may integrate term by term), then we obtain∫ L

−L
f(x) dx =

a0

2

∫ T

−L
dx+

∞∑
n=1

(
an

∫ T

−L
cos n π x

L dx+ bn

∫ T

−L
sin n π x

L dx

)
(23.36)

By the results discussed just above, (23.36) reduces to∫ L

−L
f(x) dx =

a0

2
· 2π

and hence a0 = 1
π

∫ L
−L f(x) dx.

(ii) Evaluation of am :
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Multiplying (23.34) by cos mπ x
L and integrating with respect

to x and in the range [−L, L],we obtain∫ L

−L
f(x) cos mπ x

L dx =

∫ T

−L

(
a0 +

∞∑
n = 1

(
an cos n π x

L + bn sin n π x
L

))
cos nmπ x

L dx

Assuming that the integration and summation can be inter-

changed, the above becomes∫ L

−L
f(x) cos m π x

L dx = a0

∫ T

−L
cos m π x

L dx

+
∞∑

n = 1

(
an

∫ L

−L
cos n π x

L cos m π x
L dx+ bn

∫ T

−L
sin n π x

L cos mπ x
L dx

)
Again using the results noted, the above reduces to∫ L

−L
f (x) cos m π x

L dx = am

∫ T

−L
cos m π x

L cos m π x
L dx = Lam

and hence am = 1
L

∫ L
−L f(x) cos m π x

L dx.

(ii) Evaluation of bm : Multiplying (23.34) by sin mπ x
L and in-

tegrating with respect to x and in the range [−L, L],we obtain∫ L

−L
f(x) sin mπ x

L dx
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=
∫ T

−L

(
a0 +

∞∑
n = 1

(
an cos nπ x

L + bn sin nπ x
L

))
sin mπ x

L dx

Assuming that the integration and summation can be inter-

changed, the above becomes∫ L

−L
f(x) sin mπ x

L dx = a0

∫ T

−L
sin mπ x

L dx

+
∞∑

n = 1

(
an

∫ L

−L
cos nπ x

L sin mπ x
L dx+ bn

∫ T

−L
sin nπ x

L sin mπ x
L dx

)
Again using the results noted, the above reduces to∫ L

−L
f(x) sin mπ x

L dx = bm

∫ T

−L
sin mπ x

L sin mπ x
L dx = Lbm

and hence bm = 1
L

∫ L
−L f(x) sin mπ x

L dx.

Writing n in place of m, we have the so-called Euler formu-

lae:

a0 =
1
L

∫ L

−L
f(x)dx

an =
1
T

∫ L

−L
f(x) cos n π x

L dx, n = 1, 2, 3, . . .

bn =
1
L

∫ L

−L
f(x) sin n π x

L dx, n = 1, 2, 3, . . .



Chapter 24

Fourier Series of Even and Odd

Functions

In this chapter we shall see that the tiresome work for the de-

termination of Fourier coefficients can be considerably reduced if

the given periodic function is odd or even. We first review the

concepts of even and odd functions.

434
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24.1 Even and Odd Functions

Figure 24.1: Figure on the left side is the graph of an even function.

Figure on the right side is the graph of an odd function.

Definition A real valued function f is said to be even function

or simply even if

f(−x) = f(x) for all x.

The graph of an even function is symmetrical with respect the

y-axis.

Definition A real valued function f is said to be odd function

or simply odd if

f(−x) = −f(x) for all x.

The graph of such a function is not symmetrical with respect the

y-axis, but symmetrical with respect to the origin.

Results

1. The product of two even functions is even.

2. The product of two odd functions is even.
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3. The product of an even and an odd function is odd.

Examples

Assuming that the given functions are defined over the real line,

we have

1. cos nx, x sin x, sin x 2, sin2 x, π + x2, ex
2

are all even func-

tions.

2. sin nx, x cosx are odd functions.

3. x + x2 is neither odd nor even. Similarly, ex and log x are

neither odd nor even.

4. f defined by f(x) = k, where k is a constant is an even

function.

5. If f(x) is an even function then f(x) cosnx is also even.

6. If f(x) is an even function then f(x) sinnx is odd.

7. If f(x) is an odd function then f(x) cosnx is odd.

8. If f(x) is an odd function then f(x) sinnx is even.

Properties of Even and Odd Functions

1. If f(x) is an even function, then∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx.
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2. If f(x) is an odd function, then∫ a

−a
f(x)dx = 0.

The above properties of even and odd functions can be used to

shorten the computational work to find the Fourier series of an

even or odd function for the interval [−L, L]. This is achieved via

simplifying the Euler formulae as below:

1. If f(x) is an even function, then

a0 =
1
L

∫ L

−L
f(x)dx =

2
L

∫ L

0
f(x)dx.

an =
1
L

∫ L

−L
f(x) cos nπ x

L dx =
2
L

∫ L

0
f(x) cos nπ x

L dx n = 1, 2, 3 , . . .

bn =
1
L

∫ L

−L
f(x) sin nπ x

L dx = 0 n = 1, 2, 3 , . . .

2. If f(x) is an odd function, then

a0 =
1
L

∫ L

−L
f(x) dx = 0

an =
1
L

∫ L

−L
f(x) cos nπ x

L dx = 0 n = 1, 2, 3 , . . .

bn =
1
L

∫ L

−L
f(x) sin nπ x

L dx =
2
L

∫ L

0
f(x) sin nπ x

L dx n = 1, 2, 3 , . . .
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24.2 Fourier Cosine Series

Fourier series for even 2L periodic function defined over

the interval [−L, L]

The Fourier series of an even 2L periodic function f(x) defined

over [−L, L] is a Fourier cosine series given by

f(x) =
a0

2
+

∞∑
n =1

an cos nπ x
L (24.1)

with coefficients given by

a0 =
2
L

∫ L

0
f(x)dx, n = 1, 2, . . . (24.2)

and

an =
2
L

∫ L

0
f(x) cos nπ x

L dx, n = 1, 2, . . . (24.3)

Example 1 Express the function

f(x) = x2, when − 1 < x < 1

as a Fourier series with period 2.

Solution

Step 1: Here the period 2L = 2. Hence L = 1. Also, since

f(−x) = (−x)2 = x2 = f(x),

the given function is even and hence its Fourier series is the Fourier



24.2. FOURIER COSINE SERIES 439

cosine series given by [Ref. (24.1), (24.2) and (24.3)]:

f(x) =
a0

2
+

∞∑
n = 1

an cosnπ x , (24.4)

with coefficients given by

a0 = 2
∫ 1

0
f(x)dx (24.5)

and

an = 2
∫ 1

0
f(x) cosnπ x dx, n = 1, 2, . . . (24.6)

Step 2:

a0 = 2
∫ 1

0
x2 dx =

2
3
.

an = 2
∫ 1

0
x2︸︷︷︸
u

cosnπ x︸ ︷︷ ︸
v′

dx

Applying integration by parts and on simplification, we obtain

an =
4(−1)n

n2π2
.

Step 3: The Fourier series is

f(x) =
1
3

+
4
π2

[
− cosπx+

1
22

cos 2πx− 1
32

cos 3πx+ · · ·
]

Example 2 If f(x) is a periodic function with period 2l, find the

Fourier series of f(x) = x2, when − l < x < l.
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Solution Proceeding as in the previous example, we obtain

f(x) =
l2

3
+

4l2

π2

[
− cos

πx

l
+

1
22

cos
2πx
l
− 1

32
cos

3πx
l

]

24.3 Fourier Sine Series

Fourier series for odd 2L periodic function defined over

the interval [−L, L]

The Fourier series of an odd 2L periodic function f(x) defined

over [−L, L] is a Fourier sine series given by

f(x) =
∞∑

n =1

bn sin nπ x
L (24.7)

with coefficients

bn =
2
L

∫ L

0
f(x) sin nπ x

L dx, n = 1, 2, . . . (24.8)

Example 3 Express the function

f(x) = x, when − 1 < x < 1

as a Fourier series with period 2.

Solution

Step 1: Here the period 2L = 2. Hence L = 1. Also, since

f(−x) = −x = −f(x),
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the given function is odd and hence its Fourier series is the Fourier

sine series given by [Ref. (24.7), and (24.8)]:

f(x) =
∞∑

n =1

an sinnπ x , (24.9)

with coefficients given by

bn = 2
∫ 1

0
f(x) sinnπ x dx, n = 1, 2, . . . (24.10)

Step 2:

bn = 2
∫ 1

0
x︸︷︷︸
u

sinnπ x︸ ︷︷ ︸
v′

dx

Applying integration by parts and on simplification

bn = − 2
nπ

(−1)n,

Step 3: The required Fourier series is

f(x) =
2
π

[
sinπx− sin 2πx

2
+ · · ·

]
Exercises Set A

In each of the following, find the Fourier series of the periodic

function f(t), of period 2L.

1. f(t) =

{
0, −2 < t < 0

1, 0 < t < 2
, 2L = 4.
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2. f(t) =

{
0, −1 < t < 0

t, 0 < t < 1
, 2 L = 2.

3. f(t) =

{
−1, −1 < t < 0

2t, 0 < t < 1
, 2 L = 2

4. Represent f(x) =

{
0, −l ≤ x ≤ 0

1, 0 < x ≤ l
as a Fourier series in the

range [−l, l].

5. Find the Fourier series of f(x) =

{
0, −2 ≤ x < 0

k, 0 ≤ x < 2
given

that f(x) has period 4.

6. Find the Fourier series of f(x) =

{
2, −2 ≤ x < 0

x, 0 ≤ x < 2
in

(−2, 2)..

Answers to Exercises Set A

1. 1
2 + 2

π

[
sin π t

2 + 1
3 sin 3π t

2 + 1
5 sin 5π t

2 + . . .
]

2. 1
4−

2
π2

[
cosπ t+ 1

9 sin 3π t+ · · ·
]
+ 1

π

[
sinπ t− 1

2 sin 2π t+ · · ·
]

3. 1− 4
π2

[
cosπ t+ 1

9 cos 3π t− · · ·
]
+ 2

π

[
2 sinπ t− 1

2 sin 2π t+ . . .
]

4. 1
2 + 2

π

∑∞
n=1

sin
2n+1πx

l
2n+1 .

5. k
2 + 2k

π

[
sin πx

2 + 1
3 sin 3πx

2 + 1
5 sin 5πx

2 + · · ·
]

6. 3
2 −

4
π2

∑∞
n=1

cos nx
n2 − 2

π

∑∞
n=1

sin nx
n .

Exercises Set B

1. Find the Fourier series of the function f(t) = t2 on (−l, l),
L = 2l.
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2. Find the Fourier series of the function f(t) = t on (−l, l),
L = 2l.

3. Find the Fourier series of f(t) =

{
−1, −1 < t < 0

1, 0 < t < 1
, with

period 2L = 2.

4. f(t) = 1− t2, −1 < t < 1, with period 2L = 2.

Answers to Exercises Set B

1. a0 = 2l2

3 , an = 4(−1)nl2

n2π2 , and the Fourier series is

f(t) =
l2

3
+

4l2

π2

[
− cosπt+

1
22

cos 2πt− 1
32

cos 3πt+ · · ·
]

2. bn = −2(−1)nl2

nπ , and f(t) = 2l2

π

[
sinπt− sin 2πt

2 + · · ·
]

3.
4
π

[
sinπ t+

1
3

sin 3π t+
1
5

sin 5π t+
1
7

sin 7π t+ . . .

]

4.
2
3

+
4
π2

[
cosπ t− 1

4
cos 2π t+

1
9

cos 3π t− . . .

]

24.4 Fourier Sine and Cosine Series of 2π

periodic functions

We now consider the special case when functions are 2π periodic.

Fourier series for even 2π periodic function defined over

the interval [−π, π]

Suppose f is defined over the interval [−π, π] and is an even

2π periodic function, then its Fourier series is a cosine series, called
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Fourier cosine series, and is given by:

f(x) =
a0

2
+

∞∑
n=1

an cosnx (24.11)

where

a0 =
2
π

∫ π

0
f(x)dx (24.12)

an =
2
π

∫ π

0
f(x) cosnx dx n = 1, 2, 3 . . . (24.13)

Attention! By Theorem 2 in the previous chapter, the equality

in (24.11) holds only at the points of continuity.

Example 4 Find the Fourier series expansion for f(x) = x2 in

[−π, π] with f(x) = f(x+ 2π) ∀ x ∈ R.

Hence deduce that

1. 1− 1
22 + 1

32 − 1
42 + 1

52 − . . . = π2

12 .

2. 1 + 1
22 + 1

32 + 1
42 + 1

52 + . . . = π2

6 .

3. 1 + 1
32 + 1

52 + . . . = π2

8 .

Solution

Step 1: (Verifying that f is even)

Here for −π ≤ x ≤ π , we have by the definition of f,

f(−x) = (−x)2 = x2 = f(x).
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Hence by the 2π periodicity of f,

f(−x) = f(x)

for all real values of x. Hence f is an even function and hence

the Fourier series is the Fourier cosine series given by (??) whose

coefficients are given by (24.12) and (24.13).

Step 2: [Determination of Fourier coefficients using (24.12) and

(24.13)]

a0 =
2
π

∫ π

0
f(x)dx

=
2
π

∫ π

0
x2dx =

1
π

[
x3

3

]π

0

=
2π2

3
.

and an = 2
π

∫ π
0 f (x) cosnx dx

=
2
π

∫ π

0
x2︸︷︷︸
u

cosnx︸ ︷︷ ︸
v′

dx

=
2
π

([
x2 sinnx

n

]π

0

−
∫ π

0
2x

sinnx
n

dx

)
,

by integration by parts

=
2
π

(
0−

∫ π

0
2x

sinnx
n

dx

)
=
−4
n π

∫ π

0
x sinnx dx

=
−4
nπ

([
−xcosnx

n

]π
0
−
∫ π

0
−cosnx

n
dx

)
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=
−4
n π

(
−π cosnπ

n
+

1
n

[
sinnx
n

]π

0

)
=

4
n2

cosnπ

=
4
n2

(−1)n . =

{
4
n2 ,

− 4
n2 ,

if n is even

if n is odd

Step 3: Substituting the above values, the Fourier cosine series

of the given function is

f(x) =
π2

3
− 4

[
cosx− cos 2x

22
+

cos 3x
32

− cos 4x
42

+ . . .

]
(24.14)

Step 4: (Deduction)

(i) Since f is continuous at x = 0, by Theorem 1, equality in

(24.14) holds at x = 0. Also, and noting that f(0) = 02 = 0,

substituting x = 0 in (??) we obtain

0 = f(0) =
π2

3
− 4

[
cos 0− cos 0

22
+

cos 0
32

− cos 0
42

+ . . .

]
(24.15)

i.e., 0 = π2

3 − 4
[
1− 1

22 + 1
32 − 1

42 + . . .
]

or π2

3 = 4
[
1− 1

22 + 1
32 − 1

42 + . . .
]

or
π2

12
= 1− 1

22
+

1
32
− 1

42
+ · · · . (24.16)

(ii) Since f is continuous at x = π, noting that f(π) = π2, (??)

gives

π2 = f(π) =
π2

3
− 4

[
cosπ − cos 2π

22
+

cos 3π
32

− cos 4π
42

+ . . .

]
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i.e.,

π2 =
π2

3
− 4

[
−1− 1

22
− 1

32
− 1

42
− . . .

]
or

2π2

3
= 4

[
1 +

1
22

+
1
32

+
1
42

+ . . .

]
or

π2

6
= 1 +

1
22

+
1
32

+
1
42

+ · · · . (24.17)

(iii) Adding the series in (24.16) and (24.17), we obtain

π2

12
+
π2

6
= 2

[
1 +

1
32

+
1
52

+ · · ·
]

or
π2

8
= 1 +

1
32

+
1
52

+ · · · .

Example 5 Find the Fourier series for f(x) = |x| in [−π, π] with

f(x) = f(x+ 2π) ∀ x ∈ Rand deduce that

1 +
1
32

+
1
52

+ . . . =
π2

8
.

Solution

Step 1: (Verifying that f is even)

Here for −π ≤ x ≤ π, we have by the definition of f,

f(−x) = |−x| = |x| = f(x).
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Hence by the 2π periodicity of f,

f(−x) = f(x)

for all real values of x. Hence f is an even function and hence the

Fourier series is the Fourier cosine series given by (24.11) whose

coefficients are given by (24.12) and (24.13).

Step 2: [Determination of Fourier coefficients using (24.12) and

(24.13)]

a0 =
2
π

∫ π

0
f (x) dx =

2
π

∫ π

0
|x| dx =

2
π

∫ π

0
x dx =

2
π

[
x2

2

]π

0

= π.

an =
2
π

∫ π

0
f (x) cosnx dx =

2
π

∫ π

0
|x| cosnx dx

=
2
π

∫ π

0
x cosnx dx =

2
π

{[
x

sinnx
n

]π

0

−
∫ π

0

sinnx
n

}
=

2
π

{
0−

[
−cosnx

n2

]π
0

}
=

2
n2π

{(−1)n − 1}

=

{
0,

− 4
n2π

,

if n is even

if n is odd

Step 3: Substituting the above values in (24.11), the Fourier

cosine series of the given function is

f(x) =
π

2
− 4
π

[
cosx
12

+
cos 3x

32
+

cos 5x
52

+ ...

]
. (24.18)

Step 4: (Deduction)
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x = 0 is a point of continuity hence equality in (24.18) holds at

x = 0. Noting that f(0) = 0, substitution of x = 0 in (24.18)

yields

0 = f(0) =
π

2
− 4
π

[
cos 0
12

+
cos 0
32

+
cos 0
52

+ ...

]
or

π

2
=

4
π

[
1
12

+
1
32

+
1
52

+ ...

]
or

1
12

+
1
32

+
1
52

+ ... =
π2

8
.

Example 6 Find the Fourier series of f(x) =

−x, −π ≤ x < 0

x, 0 ≤ x ≤π

and f(x+ 2π) = f(x) .

Solution Note that the given function is nothing but the same in

the previous Example.

Example 7 Find the Fourier series for f(x) = x sinx in [−π, π]

with f(x) = f(x+ 2π) ∀x ∈ R.

Solution

Step 1: (Verifying that f is even)

Here for −π ≤ x ≤ π , we have by the definition of f,

f(−x) = −x sin(−x) = −x(− sinx) = x sinx = f(x).
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Hence by the 2π periodicity of f,

f(−x) = f(x)

for all real values of x (except at multiples of π). Hence f is an

even function and hence the Fourier series is the Fourier cosine

series given by (24.11) whose coefficients are given by (24.12) and

(24.13).

Step 2: [Determination of Fourier coefficients using (24.12) and

(24.13)]

a0 =
2
π

∫ π

0
f(x) dx =

2
π

∫ π

0
x sinx dx

=
2
π

[−x cosx]2π
0 − 2

π

∫ π

0
(− cosx) dx =

2
π

(−π sinπ) = 2.

an =
2
π

∫ π

0
f(x) cosnx dx =

2
π

∫ π

0
x sinx cosnx dx

=
1
π

∫ π

0
x [sin(n+ 1)x− sin(n− 1)x] dx,

since 2 sinA cosB = sin(A+B) + sin(A−B)

=
1
π

∫ π

0
x sin(n+ 1)x dx− 1

π

∫ π

0
x sin(n− 1)x dx

=


− cos(n+1)π

n+1 , when n = 1

cos(n−1)π
n−1 − cos(n+1)π

n+1 , when n 6= 1

Step 3: Substituting the above values, the Fourier cosine series



24.5. FOURIER SINE SERIES 451

of the given function is

f(x) = 1− 1
2

cosx− 2
[

cos 2x
22 − 1

− cos 3x
32 − 1

+
cos 4x
42 − 1

− ...

]
.

24.5 Fourier Sine Series

Fourier series for odd 2π periodic function defined over

the interval [−π, π]

Suppose f is defined over the interval [−π, π] and is an odd 2π

periodic function, then its Fourier series is a sine series, called

Fourier sine series, and is given by:

f(x) =
∞∑

n=1

bn sinnx (24.19)

where

bn =
2
π

∫ π

0
f(x) sinnx dx (n = 1, 2, 3 , . . .) (24.20)

Example 8 Find the Fourier series of f given by

f(x) = x,

where −π < x < π and f(x) = f(x+ 2π) ∀ x ∈ R.

Solution

Step 1: (Verifying that f is odd)
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Here for −π < x < π, we have by the definition of f,

f(−x) = −x = −f(x).

Hence by the 2π periodicity of f,

f(−x) = −f(x)

for all real values of x (except at multiples of π). Hence f is an

odd function and hence the Fourier series is the Fourier sine series

given by (24.19) whose coefficients are given by (24.20).

Step 2: [Determination of Fourier coefficients using (24.20)]

bn =
2
π

∫ π

0
f(x) sinnx dx =

2
π

∫ π

0
x sinnx dx

=
2
π

{[
x

(
− cosnx

n

)]π

0

−
∫ π

0

(
−cosnx

n

)
dx

}

= 2
nπ (−π cosnπ)= 2

n(−1)n+1, on simplification

=

{
− 2

n ,
2
n ,

if n is even

if n is odd

Step 3: Substituting the above values in (24.17), the Fourier sine

series of the given function is

f(x) = 2
[
sinx− sin 2x

2
+

sin 3x
3

− ...

]
.
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Example 9 Find the Fourier series of f given by

f(x) = sinh ax,

where –π < x < π and f(x) = f(x+ 2π) ∀ x ∈ R.

Solution

Step 1: (Verifying that f is odd)

Here for −π < x < π, we have by the definition of f,

f(−x) = sinh(−ax) = − sinh ax = −f(x).

Hence by the 2π periodicity of f,

f(−x) = −f(x)

for all real values of x (except at multiples of π). Hence f is an

odd function and hence the Fourier series is the Fourier sine series

given by (24.19) whose coefficients are given by (24.20).

Step 2: [Determination of Fourier coefficients using (24.20)]

bn =
2
π

∫ π

0

(
eax − e−ax

2

)
sinnx dx (24.21)

We take I1 =
∫ π
0 eax sinnx dx and I2 =

∫ π
0 e−ax sinnx dx.

Evaluation of I1 :

I1 =
∫ π

0
eax sinnx dx =

[
eax
(
−cosnx

n

)]π
0
−
∫ π

0
aeax

(
−cosnx

n

)
dx
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=
−eaπ cosnπ + 1

n
+
[
aeax

(
sinnx
n2

)]π

0

−
∫ π

0
a2eax

(
sinnx
n2

)
dx

i.e., (
1 +

a2

n2

)
I1 =

−eaπ cosnπ + 1
n

=
eaπ(−1)n+1 + 1

n
.

Hence

I1 =
n

n2 + a2

(
eaπ(−1)n+1 + 1

)
.

In a similar manner,

I2 =
n

n2 + a2

(
e−aπ(−1)n+1 + 1

)
.

Substituting these values in (A), we obtain

bn =
1
π

(I1 − I2) =
1
π

{
(−1)n+1n

a2 + n2

(
eaπ − e−aπ

)}
Step 3: Substituting the above values in (24.19), the Fourier sine

series of the given function is

f(x) =
1
π

∑{
(−1)n+1n

a2 + n2

(
eaπ − e−aπ

)}
sinnx.

Exercises

In Exercises 1 to 6, prove the results.

1. The sum and the product of even functions are even functions.

2. The sum of odd functions is odd. The product of two odd

functions is even.
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3. The sum of even functions is even. The product of two even

functions is even.

4. The product of even and odd functions is odd.

5. If f(x) is odd, then |f(x)| and f2(x) are even functions.

6. If f(x) is even, then |f(x)| , f2(x) and f3(x)are even functions.

7. Find the Fourier series of f(x) = x2

4 ,−π < x < π with f(x +

2π) = f(x) . Also deduce that

1− 1
4

+
1
9
− 1

16
+

1
25

+ ... =
π2

12
.

8. Find the Fourier series expansion of

f(x) = π2 − x2, −π < x < π with f(x) = f(x+ 2π).

9. Find the Fourier series of f(x) =

{
π + x, −π < x < 0

π − x, 0 < x < π

and f(x) = f(x+ 2π).

10. Find the Fourier Coefficients and then Fourier series of f(x) ={
π
2 + x,

π
2 − x,

−π < x < 0

0 < x < π
and f(x+ 2π) = f(x)

11. Obtain the Fourier series expansion of the function f(x) ={
1 + 2x

π ,

1− 2x
π ,

−π < x < 0

0 < x < π
of period 2π : Also deduce that

π2

8 = 1
12 + 1

32 + 1
52 + · · ·

12. Obtain the Fourier series expansion of the following function of

period 2π : f(x) =

{
−a,
a,

−π < x < 0

0 < x < π
. Also deduce that

π
4 =

∑∞
n=0

(−1)n

2n+1 .

13. Find the Fourier series expansion of
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f(x) =

{
−1 + x, −π < x < 0

1 + x, 0 < x < π
and f(x) = f(x+2π).

Also, deduce that π
4 = 1− 1

3 + 1
5 − · · ·

14. Express cosh ax in Fourier series of period 2π with −π < x <

π.

15. Find the Fourier series of f given by

f(x) =

{
−1 + x,

1 + x,

when − π < x < 0

when 0 < x < π
and f(x) = f(x +

2π).

Hints to Exercises

9 to 11: If x is such that 0 < x < π, then −π < −x < 0, and

f(−x) = f(x).

12&13: If x is such that 0 < x < π, then −π < −x < 0, and

f(−x) = −f(x).

14: Given is an even function. 15: Given is an odd function.

Answers

7. f(x) = π2

12 − cosx+ 1
4 cos 2x− 1

9 cos 3x+ 1
16 cos 4x− ...

8. 2π2

3 − 4
∑∞

n=1
(−1)n cos nx

n2 .

9. π
2 + 4

π

[
cosx+ 1

9 cos 3x+ 1
25 cos 5x+ . . .

]
10.

a0 = 0, an =

{
0, whenn is even
4

πn2 , whenn is odd

f(x) =
4
π

[
1

cosx
+

1
9

cos 3x+
1
25

cos 5x+ ...

]
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11. 8
π2

[
cos x
12 + cos 3x

32 + cos 5x
52 + · · ·

]
12. 4a

π

[
sin x

1 + sin 3x
3 + sin 5x

5 + · · ·
]

13. bn = 2
nπ −

2(π+1)(−1)n

nπ =

{
− 2

n
2

nπ + 2(π+1)
nπ

when n is even

when n is odd
and

f(x) = 2(π+2)
π sinx − 2

2 sin 2x + 2(π+2)
3π sin 3x − 2

4 sin 4x +
2(π+2)

5π sin 5x− · · ·For the deduction, put x = π
2 .

14. f(x) = 1
aπ sinh aπ + a

π

∑∞
n=1

(−1)n

a2+n2 [eaπ − e−aπ] cosnx.

15. f(x) = 2
π

∑∞
n=1

1
n [1− (1 + π)(−1)n] sinnx.



Chapter 25
Half Range Fourier Series -

Even and Odd Extensions

25.1 Introduction

In this chapter we will see that any function (that need not be

periodic) defined over a finite interval [0, L] can be represented

by means of Fourier series of period 2L. Before going into the

details we define the extension and restriction of functions.

Definition Suppose A ⊂ B ⊂ R and suppose that f : A → R

and g : B → R be two functions. We say that the function g is an

extension of the function f if

g(x) = f(x) ∀ x ∈ A.

458
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In that case we also say that f is the restriction of g on A.

Examples Suppose A = [0, L] and B = [−L, L] and consider

the functions

f(x) = x for x ∈ [0, L] (25.1)

and

g(x) = x for x ∈ [−L, L] (25.2)

Since g(x) = f(x) ∀ x ∈ [0, L]

g is an extension of the function f.

If we also consider the function h defined by

h(x) = |x| for x ∈ [0, L] (25.3)

then, since h(x) = f(x) ∀ x ∈ [0, L]

h is also an extension of f.

Figure 25.1:

Since g is an odd function, we say g is an odd extension of f

and since h is an even function, h is an even extension of f

(Fig.25.1)
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Consider the function f considered in Eq. (25.1) above. i.e.,

f is defined by

f(x) = x ∀ x ∈ [0, L] .

Clearly, the given function is defined only over an interval of

length L and is not periodic. But it can be extended to

an odd periodic function or an even periodic function as we will

discuss now. Depending on the type of extension there are two

Fourier series representations forf(x):

(i) when we consider odd periodic extension function the cor-

responding Fourier series would not contain cosine terms. As only

sine terms appear in the series and the half part (the cosine part)

are missing, the series is called half range Fourier sine series.

(i) when we consider even periodic extension function the cor-

responding Fourier series would not contain sine terms. As only

cosine appear in the series and the half part (the sine part) are

missing, the series is called half range Fourier cosine series.

Half Range Fourier Sine Series

g defined by (25.2) is an odd extension for f defined by (25.1).

If we also suppose that

g(x+ 2L) = g(x) for every x,

then g becomes a 2L periodic function and hence becomes an

odd 2L periodic extension of the function f . Being an odd

2L periodic function, the Fourier series for g is the Fourier sine
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series given by

g(x) =
∞∑

n=1

bn sin nπ x
L ,

where

bn =
2
L

∫ L

0
g(x) sin nπ x

L dx.

We consider the above sine series as that one corresponds to the

given non-periodic function f and call it the half range Fourier

sine series for the function f .

Half Range Fourier Sine Series Formula

Suppose we are given with a function f(x) defined over the

interval 0 ≤ x ≤ L and that f need not be periodic. As

g(x) = f(x) for x ∈ [0, L], from the last two equations, the half

range Fourier sine series for the function f is given by

f(x) =
∞∑

n=1

bn sin nπ x
L (25.4)

where

bn =
2
L

∫ L

0
f(x) sin nπ x

L dx (25.5)

Half Range Fourier Cosine Series

h defined by (25.3) is an even extension for f defined by (25.1). If

we also suppose that

h(x+ 2L) = h(x) for every x,

then h becomes a 2L periodic function and hence becomes an

even 2L periodic extension of the function f . Being an even

2L periodic function, the Fourier series for h is the Fourier cosine
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series given by

h(x) =
a0

2
+

∞∑
n =1

an cos nπ x
L ,

where

a0 =
2
L

∫ L

0
h(x)dx

and

an =
2
L

∫ L

0
h(x) cos nπ x

L dx.

We consider the above cosine series as that one corresponds to the

given non-periodic function f and call it the half range Fourier

cosine series for the function f .

Half Range Fourier Cosine Series Formula

Suppose we are given with a function f(x) defined over the

interval 0 ≤ x ≤ L and that f need not be periodic. As

h(x) = f(x) for x ∈ [0, π], from the last three equations, the half

range Fourier cosine series for the function f is given by

f(x) =
a0

2
+

∞∑
n =1

an cos nπ x
L (25.6)

where

a0 =
2
L

∫ L

0
f(x)dx (25.7)

and

an =
2
L

∫ L

0
f(x) cos nπ x

L dx (25.8)
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Example 1 Find the half range expansions of the function

f(t) =


2k
l

t, when 0≤t< l
2

2k
l

(l−t), when l
2
≤t<l

Solution

Here, we take the given range 0 ≤ t ≤ l as the half range, so that

the full range is −l ≤ t ≤ l and we take the period as 2L = 2l.

(i) Half range sine series

Putting L = l and changing the variable x to t, gives

f(t) =
∞∑

n =1

bn sin nπ t
l (25.9)

and

bn =
2
l

∫ l

0
f(t) sin nπ t

l dt

=
2
l

{∫ l/2

0

2kt
l

sin
nπt

l
dt+

∫ l

l/2

2k
l

(l − t) sin
nπt

l
dt

}

= 8k
n2π2 sin nπ

2 , on simplification.

Hence, by (25.9), half range sine expansion of f(t) is given by

f(t) =
8k
π2

[
1
12

sin
πt

l
− 1

32
cos

3πt
l

+
1
52

cos
5πt
l
− ...

]
(ii) Half range cosine series
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Putting L = l and changing the variable x to t, we obtain

f(t) =
a0

2
+

∞∑
n =1

an cos nπ t
l (25.10)

and a0 = 2
l

∫ l
0 f(t) dt

an =
2
l

∫ l

0
f(t) cos nπ t

l dt

That is,

a0 =
2
l

{∫ l/2

0

2kt
l
dt+

∫ l

l/2

2k
l

(l − t)dt

}

= k, on simplification

an =
2
l

{∫ l/2

0

2kt
l

cos
nπt

l
dt+

∫ l

l/2

2k
l

(l − t) cos
nπt

l
dt

}

=
4k
n2π2

(
2 cos

nπ

2
− cosnπ − 1

)
Thus a2 = − 16k

22π2 , a6 = − 16k
62π2 , a10 = − 16k

102π2 , and

an = 0 when n 6= 2, 6, 10, 14, . . . Hence, the half range cosine

expansion is

f(t) =
k

2
− 16k

π2

[
1
22

cos
2πt
l

+
1
62

cos
6πt
l

+ ...

]
Example 2 Obtain the half range cosine series of

f(x) = x, when 0 < x < 2.
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Solution

Here, we take the given range 0 ≤ x ≤ 2 as the half range,

so that the full range is −2 ≤ t ≤ 2 and we take the period as

2T = 2× 2 = 4.

Half range cosine series is obtained as follows:

We have

a0 =
2
L

∫ L

0
f(x)dx =

2
2

∫ 2

0
f(x)dx

=
∫ 2

0
x dx

=
[
x2

2

]2

0

= 2.

an =
2
T

∫ T

0
f(x) cos

nπx

T
dx =

2
2

∫ 2

0
f(x) cos

nπx

2
dx

=
∫ 2

0
x︸︷︷︸
u

cos nπx
c︸ ︷︷ ︸

v′

dt =
4

n2π2
[(−1)n − 1]

=

{
0, when n is even

− 8
n2π2 , when n is odd

Hence the half range Fourier cosine series is

...f(x) = 1− 8
π2

[
1
12

cos
πx

2
+

1
32

cos
3πx
2

+ · · ·
]

Example 3 Find the half range sine series of the function
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f(x) =

x, when 0<x<1

2−x, when 1<x<2

in 0 ≤ x ≤ 2.

Solution

Here, we take the given range 0 ≤ x ≤ 2. as the half range,

so that the full range is −2 ≤ x ≤ 2. and we take the period as

2L = 2× 2 = 4. We have

bn =
2
L

∫ L

0
f(x) sin

nπx

L
dx =

2
2

∫ 2

0
f(x) sin

nπx

2
dx

=
∫ 1

0
x · sin nπx

2
dx+

∫ 2

1
(2− x) sin

nπx

2
dx

= 8
n2π2 sin nπ

2 , on simplification.

Hence half range sine expansion of f(x) is given by

f(x) =
∞∑

n = 1

bn sin nπx
T =

∞∑
n =1

bn sin nπx
2 =

8
π2

∞∑
n=1

sin
nπ

2
sin

nπ x

2
.

Exercises

1. Represent f(x) = x, 0 < x < 1 by half range (i) Fourier

sine series and

(ii) Fourier cosine series.

2. Expand f(x) = 2x as a series of cosines in [0, 1].

3. Represent f(x) = π − x, 0 < x < 1 by a Fourier cosine

series.
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4. Expand f(x) =

{
l, 0 < x < l

2
2a
l (l − x), l

2 < x < l
as a half range

sine series in the interval 0 < x < l.

5. For the function f(x) =

{
2x, 0 < x < 1

4− 2x, 1 < x < 2
find (i)

Fourier cosine series and (ii) Fourier sine series of period 4.

6. Expand f(x) = x cos a as a half range cosine series in the

interval 0 < x < 2..

7. Represent f(x) = (x−1)2, 0 < x < 1 by Fourier sine series.

8. Express f(x) = x in half range cosine series of periodicity 2l

in the range 0 < x < l.

9. Find the half range Fourier cosine series with period 4 of the

function

f(x) =

{
1, 0 < x < 1

0, 1 < x < 2

10. Find the half range Fourier sine series with period 6π of the

function

f(x) =


0, 0 < x < π

1, π < x < 2π

2, 2π < x < 3π
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11. Obtain the half range cosine series for

f(t) =

kt, when 0≤t≤ l
2

k(l−t), when l
2
≤t≤l

12. Obtain the half range cosine series of

f(x) = x, when 0 < x < l.

Answers

1. (i) 1
2−

4
π2

[
cos πx

12 + cos 3πx
32 + · · ·

]
(ii) 2

π

[
sinπx− sin 2πx

2 + sin 3πx
3 − · · ·

]
2. f(x) = π

2 −
8
π

[
cosx+ cos 3x

32 + · · ·
]

3. (i) f(x) = π
2 + 4

π

[
cosx+ cos 3x

32 + · · ·
]

(ii) f(x) = 2
[
sinx+ sin 2x

2 + sin 3x
3 + · · ·

]
4. 8a

π2

[
sin πx

l − 1
32 sin 3πx

l + 1
52 sin 5πx

l + · · ·
]

5. (i)
∑∞

n=1
8

n2π2 sin nπ
2 sin nπx

2 (ii) 5− 16
π2

∑∞
n=1

cos(2n−1)πx

(2n−1)2

6. cos a− 8
n2π2

∑∞
n=1

1
(2n−1)2

cos (2n−1)π x
2 .

7. f(x) = 4
π3

∑∞
n=1

[(−1)n+2n2π2−1]
n3 cosnπ x

8. f(x) = l
2 −

4l
π2

[
1
12 cos πx

2 + 1
32 cos 3πx

2 + · · ·
]

9. 1
2 + 2

π

∑∞
n=1

(−1)n−1

2n−1 cos (2n−1)πx
2
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10.
∑∞

n=1
2

nπ

(
cos nπ

3 + cos 2nπ
3 − 2 cosnπ

)
sin nx

3

11. f(t) = kl
4 −

8kl
π2

[
1
22 cos 2π t

l + 1
62 cos 6π t

l + · · ·
]

12. f(x) = l
2 −

4l
π2

[
1
12 cos πx

2 + 1
32 cos 3πx

2 + · · ·
]

25.2 Half Range Series of functions defined

over [0, π]

We now consider the special case in which the interval is [0, π]

instead of [0, L].

Half Range Fourier Sine Series Formula

As g(x) = f(x) for x ∈ [0, π], from the last two equations, the

half range Fourier sine series for the function f is given by

f(x) =
∞∑

n=1

bn sinnx (25.11)

where

bn =
2
π

∫ π

0
f(x) sinnx dx (25.12)

Half Range Fourier Cosine Series Formula

As h(x) = f(x) for x ∈ [0, π], from the last three equations, the

half range Fourier cosine series for the function f is given by

f(x) =
a0

2
+

∞∑
n=1

an cosnx (25.13)
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where

a0 =
2
π

∫ π

0
f(x)dx (25.14)

and

an =
2
π

∫ π

0
f(x) cosnx dx (25.15)

Example 4 Obtain the (i) Fourier sine series and (ii) Fourier

cosine series for the function

f(x) = x for x ∈ [0, π]

Solution

(i) Half range Fourier sine series:

Step 1: If we consider odd 2π periodic extension, we get the half

range Fourier sine series (25.11) with coefficients given by (25.12).

Step 2: Determination of Fourier coefficients using (25.12).

bn =
2
π

∫ π

0
x sinnxdx =

2
π

[
−x cosnx

n

]π

0

+
2
π

∫ π

0
cosnxdx

= − 2
nπ

(π cosnπ − 0) + 0 = − 2
n

cosnπ =
2
n

(−1)n+1

=

{
− 2

n ,
2
n ,

if n is even

if n is odd

Step 3: Substituting these values in (25.11), we obtain the half

range Fourier sine series

f(x) = 2
[
sinx− sin 2x

2
+

sin 3x
3

− ...

]
.

(i) Half range Fourier cosine series:
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Step 1: If we consider even 2π periodic extension, we get the

Fourier half range cosine series given by (25.13) with coefficients

given by (25.14) and (25.15).

Step 2: Determination of Fourier coefficients using (25.14) and

(25.15).

a0 =
2
π

∫ π

0
|x| dx =

2
π

∫ π

0
x dx =

2
π

[
x2

2

]π

0

= π.

an =
2
π

∫ π

0
|x| cosnx dx =

2
π

∫ π

0
x cosnx dx

=
2
π

{[
x

sinnx
n

]π

0

−
∫ π

0

sinnx
n

}
=

2
π

{
0−

[
−cosnx

n2

]π
0

}
=

2
n2π

{(−1)n − 1}

=

{
0,

− 4
n2π

,

if n is even

if n is odd

Step 3: Substituting these values in (25.13), we obtain the half

range Fourier cosine series

f(x) =
π

2
− 4
π

[
cosx
12

+
cos 3x

32
+

cos 5x
52

+ ...

]
.

Example 5 Obtain the (i) Fourier sine series and (ii) Fourier

cosine series for the function

f(x) = π − x, 0 < x < π.



472 CHAPTER 25. EVEN AND ODD EXTENSIONS

Assuming the convergence of the series at x = 0, deduce that

π2

8
=

1
12

+
1
32

+
1
52

+ ...

Solution

(i) Half range Fourier sine series:

Using (25.11) and (25.12), half range Fourier sine series is obtained

as follows:

bn =
2
π

∫ π

0
f(x) sinnxdx =

2
π

∫ π

0
(π − x) sinnxdx

= 2
n , on simplification.

Hence

f(x) =
∑

bn sinnx =
∑ 2

n
sinnx = 2

[
sinx+

sin 2x
2

+
sin 3x

3
+ ...

]

(ii) Half range Fourier cosine series:

Using (25.13), (25.14) and (25.15), half range Fourier cosine series

is obtained as follows:

a0 = 2
π

∫ π
0 f(x)dx = 2

π

∫ π
0 (π − x)dx= π, on simplification.

an =
2
π

∫ π

0
f(x) cosnx dx =

2
π

∫ π

0
(π − x)︸ ︷︷ ︸

u

cosnx︸ ︷︷ ︸
v′

dx

=

{
0,

4
n2π

,

if n is even

if n is odd
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Hence the half range Fourier cosine series for π − x in [0, π] is

f(x) =
π

2
+

4
π

[
cosx
12

+
cos 3x

32
+

cos 5x
52

+ ...

]
. (25.16)

Deduction of the Series:

Assuming the convergence of the series at x = 0, from (25.16), we

obtain

π − 0 =
π

2
+

4
π

[
cos 0
12

+
cos 0
32

+
cos 0
52

+ ...

]
,

which on simplification yields,

π2

8
=

1
12

+
1
32

+
1
52

+ ...

Example 6 Obtain the Fourier sine series for the function

f(x) = c , x ∈ [0, π].

Also deduce that π
4 = 1− 1

3 + 1
5 −

1
7 + · · ·

Solution

Here bn = 2
π

∫ π
0 f(x) sinnxdx = 2

π

∫ π
0 c sinnxdx

=

{
0, when n is even
4c
nπ , when n is odd
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Hence the Fourier sine series is

f(x) =
4c
π

[
sinx+

sin 3x
3

+ ...

]
i.e.,

c =
4c
π

[
sinx+

sin 3x
3

+ ...

]
. (25.17)

Putting x = π
2 in (25.17), we obtain

c =
4c
π

[
sin π

2 +
sin 3π

2

3
+ ...

]
.

Hence π
4 = 1− 1

3 + 1
5 −

1
7 + · · ·

Example 7 Expand f(x) = cosx in the half range sine-series in

0 ≤ x < π.

Solution

Here bn = 2
π

∫ π
0 f(x) sinnxdx = 2

π

∫ π
0 cosx sinnx dx

=

{
4n

π(n2−1)
, when n is even

0, when n is odd

Hence the half range Fourier sine series for the given function is

cosx =
4
π

[
2 sin 2x
22 − 1

+
4 sin 4x
42 − 1

+
6 sin 6x
62 − 1

+ · · ·
]

Exercises

1. Represent f(x) = x2, 0 ≤ x < π by a Fourier sine series.

2. Find the Fourier coefficient and represent f(x) = 1, 0 ≤ x < π



25.2. HALF RANGE SERIES 475

by Fourier sine series. Hence deduce that

π

4
= 1− 1

3
+

1
5
− 1

7
+ . . .

3. Show that the Fourier cosine series of sin x in the half range

0 ≤ x < π is sinx = 4
π

[
1
2 −

cos 2x
1·3 − cos 4x

3·5 − cos 6x
5·7 − · · ·

]
4. Show that the function f(x) = cos 2x, x ∈ [0, π] is given by

the Fourier sine series cos 2x = − 4
π

[
sin x

3 − 3
5 sin 3x− · · ·

]
.

5. Show that the Fourier sine series of f(x) = π x
8 (π − x) in the

half range 0 ≤ x < π is sin x
13 + sin 3x

33 + sin 5x
53 + · · ·

6. Show that the sine series for the function f(x) =

{
x, 0 < x < π

2

0, π
2 < x < π

is given by 2
π

[
sin x
12 + π sin 2x

42 − sin 3x
32 − π sin 4x

8 − · · ·
]
.

7. Show that the sine series for the function f(x) =

{
0, 0 < x < π

2

c, π
2 < x < π

is given by

2c
π

[
sinx

1
− 2 sin 2x

2
+

sin 3x
3

+
sin 5x

5
− 2 sin 6x

6
· · ·
]

and the cosine series is given by

2c
π

[
π

4
− cosx

1
+

cos 3x
3

− cos 5x
5

+ · · ·
]

8. Show that the cosine series for the function

f(x) =

{
πx
4 , 0 < x < π

2
π
4 (π − x), π

2 < x < π
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is given by π2

16 −
1
2

[
cos 2x

12 + cos 6x
32 + · · ·

]
9. Show that f(x) = πx − x2, x ∈ [0, π] can be represented by

the Fourier sine series 8
π

[
sinx+ 1

33 sin 3x+ 1
53 sin 5x+ · · ·

]
.

10. Show that the Fourier cosine series of the function f(x) =

x sinx, x ∈ [0, π] is given by

1− cosx
2

− 2 cos 2x
1 · 3

+
2 cos 3x

2 · 4
2 cos 4x

3 · 5
+ · · ·

Hence deduce that 1
2 + 1

1·3 −
1

3·5 + 1
5·7 − · · · = π

4 .

11. Expand f(x) = πx− x2, x ∈ [0, π] in Fourier cosine series.

12. Express f(x) = x sinx, x ∈ [0, π] in half range sine series.

Answers

1. f(x) = 2
π

∑∞
n=1(−1)n+1

{
π2

n + 2
n3 [(−1)n − 1]

}
sinnx

2. bn = 2
n π

[
1 + (−1)n+1

]
, f(x) = 4

π

[
sinx+ sin 3x

3 + . . .
]

4. f(x) = 4
π

[
sinx− 1

32 sin 3x+ 1
52 sin 5x− . . .

]
11. π x− x2 = π

6 − 2
∑∞

n=1
1+(−1)n

n2 cosnx

12. f(x) = 1
π

∑∞
n=1

[
cos π(1−n)

(1−n)2
− cos π(1+n)

(1+n)2

]
sinnx



Chapter 26
Partial Differential Equations -

A Quick Review 1

26.1 Partial Differential Equations

An equation involving partial derivatives is a partial differential

equation. In this chapter we consider some partial differential

equations. We consider the solution of the wave equation also.

Some of the important linear partial differential equations of

the second order are given below:

One dimensional wave equation:

∂2u

∂t2
= a2∂

2u

∂x2
(26.1)

1Introductory Chapter on partial differential equations. Not mentioned in
the syllabus.

477
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One dimensional heat equation:

∂u

∂t
= a2∂

2u

∂x2
(26.2)

Two dimensional Laplace equation:

∂2u

∂x2
+
∂2u

∂y2
= 0 (26.3)

Two dimensional Poisson equation:

∂2u

∂x2
+
∂2u

∂y2
= f(x, y) (26.4)

Three dimensional Laplace equation:

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0. (26.5)

In the above c is a constant, t is time, and x, y, z are Cartesian

coordinates. Equation (26.4) with f not identically zero is non-

homogeneous, while the other equations are homogeneous.

Definition A solution of a partial differential equation in some

region R is a function which has all the partial derivatives appear-

ing in the equation in some domain containing R, and satisfies the

equation everywhere in R.

Example 1 Show that the functions

u = x2 − y2, u = ex cos y, u = log (x2 + y2)
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are solutions of the two dimensional Laplace equation (26.3).

Solution

When u = x2 − y2, we have

∂u

∂x
= 2x,

∂u

∂y
= −2y,

∂2u

∂x2
= 2 and

∂2u

∂y2
= −2.

Hence ∂2u
∂x2 + ∂2u

∂y2 = 0 so that u = x2 − y2 satisfies the two dimen-

sional Laplace equation (26.3). Similarly, it can be verified

u = ex cos y and u = log (x2 + y2) are also solutions of (26.3).

Example 2 Verify that u = x3 + 3xt2 is a solution of the one

dimensional wave equation (26.1), for a suitable value of a.

Solution

When u = x3 + 3xt2, we obtain

∂u

∂x
= 3x2 + 3t2,

∂2u

∂x2
= 6x,

∂u

∂t
= 6xt and

∂2u

∂t2
= 6x.

Putting the above values in the one dimensional wave equation

(26.1),

6x = a26x, for a = 1 or for a = −1.

Hence u = x3 + 3xt2 satisfies the one dimensional wave equation

when a = ±1

Theorem 1 (Fundamental Theorem for Linear Homoge-
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neous Partial Differential Equations)

If u1 and u2 are any solutions of a linear homogeneous partial

differential equation in some region, then

u = c1u1 + c2u2

where c1 and c2 are any constants, is also a solution of that equa-

tion in that region.

26.2 Relation to Ordinary Differential Equa-

tion

If a partial differential equation involves derivatives with respect to

one of the independent variables only, we can solve it like an ordi-

nary differential equation, treating the other independent variable

as constant. This is illustrated through the following examples.

Notation ux, uxx, uy, uyy, uxy, uyx denote the partial deriva-

tives
∂u

∂x
,
∂2u

∂x2
,
∂u

∂y
,
∂2u

∂y2
,

∂2u

∂x∂y
,

∂2u

∂y∂x

respectively. More precisely,

ux(x, y) =
∂u

∂x
, uxx(x, y) =

∂2u

∂x2
, uy(x, y) =

∂u

∂y
,

uyy(x, y) =
∂2u

∂y2
, uxy(x, y) =

∂2u

∂x∂y
, uyx(x, y) =

∂2u

∂y∂x
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Recall that under some conditions

∂2u

∂x∂y
=

∂2u

∂y∂x
.

i.e.,

uxy = uyx.

Example 3 Solve the partial differential equation

uxx + 4u = 0

where u is a function of two variables x and y.

Solution

Given

uxx + 4u = 0,

i.e.,
∂2u

∂x2
+ 4u = 0.

The given partial differential equation involves derivatives with

respect to the independent variable x only. We solve the given

partial differential equation, considering as an ordinary differential

equation in x, keeping y as constant. Then characteristic equation

is

λ2 + 4 = 0

and hence

λ = ±2i.
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Hence the solution to the given equation is given by u(x, y) =

f(y) cos 2x+g(y) sin 2x where f(y) and g(y) are arbitrary functions

of y alone.

Example 4 Solve the partial differential equation

uyy + 4u = 0

where u is a function of two variables x and y.

Solution

Here the partial differential equation involves only the derivatives

in the variable y. Proceeding as in Example 3, we obtain

u(x, y) = f(x) cos 2y + g(x) sin 2y

where f(x)and g(x)are arbitrary functions of x alone.

Example 5 Solve the partial differential equation

uxx − 4 = 0

where u is a function of two variables x and y.

Solution

The partial differential equation involves derivatives with respect

to the variable x only. Hence the given equation can be treated

as an ordinary differential equation in x with y as constant.

∂2u

∂x2
− 4 = 0
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implies
∂2u

∂x2
= 4.

Integrating with respect to x, we obtain

∂u

∂x
= 4x+ f(y),

where f(y) is an arbitrary function of y alone.

Integrating again with respect to x, we obtain

∂u

∂x
= 2x2 + xf(y) + g(y).

Example 6 Solve the partial differential equation uy + 2 y u =

0, where u is a function of two variables x and y.

Solution

The given partial differential equation involves derivatives with

respect to the independent variable y only. We solve the given par-

tial differential equation, considering it as an ordinary differential

equation in y, keeping x as constant. By separating variables, the

given equation is
∂u

u
= −2y ∂y

Integrating,

log u = −y2 + log f(x)

or

u = f(x)e−y2
.
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Example 7 Setting ux = p, solve uxy = ux.

Solution

uxy = ux

can be written as
∂

∂y

(
∂u

∂x

)
=
∂u

∂x

or
∂

∂y
(p) = p.

Since p is the dependent variable and y is the only independent

variable, the last equation can be considered as the first order

ordinary equation
dp

dy
= p (26.6)

regarding x as constant. By separating variables, (26.1)

becomes
dp

p
= dy

which on integration with respect to y partially yields

log p = y + log f(x)

where f(x) is an arbitrary function of x alone. Hence

p = eyf(x)

i.e.,
∂u

∂x
= eyf(x).
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Now considering y as a constant and integrating partially with

respect to x, we obtain the following as the solution of the given

equation

u = ey
∫
f(x)dx+ g(y)

where g(y) is an arbitrary function of y alone.

26.3 Product Method (Separation of Vari-

ables)

We now discuss the product method for finding the solution u(x, y)

of a given partial differential equation.

Example 8 Find the solution of ux + uy = 0 by separating vari-

ables (product method).

The given partial differential equation is

∂u

∂x
+
∂u

∂y
= 0 . . . (26.7)

Let the solution of this equation be

u(x, y) = X(x)Y (y)

where X(x) is a function of x alone and Y (y) is a function of y

alone.

Let X ′ = dX
dx and Ẏ = dY

dy ,
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so that (26.7) becomes the form

X ′ Y +XẎ = 0

or

X ′ Y = −XẎ .

or
X ′

X
= − Ẏ

Y
.

In the last equation, the expression on the left involves func-

tions depending only on x while the expression on the right in-

volves functions depending only on y. Hence both expressions

must be equal to a constant2, say, k.

Hence
X ′

X
= − Ẏ

Y
= k. (26.8)

(26.8) yields two ordinary differential equations, viz,

X ′ − kX = 0. (26.9)

and
˙6 Y + kY = 0 (26.10)

2Reason: If the expression on the left is not constant, then changing x will
presumably change the value of this expression but certainly not that on the
right, since the latter does not depend on x. Similarly, if the expression on
the right is not constant, changing y will presumably change the value of this
expression but certainly not that on the left.
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(26.9) is a linear differential equation in x :

dX

dx
− kX = 0

and its solution is

X(x) = c1e
kx.

(26.10) is a linear differential equation in y :

dY

dy
+ kY = 0

and its solution is Y (y) = c2e
−ky.

Hence solution to (26.7) is

u(x, y) = X(x)Y (y) = Cekxe−ky = Cek(x−y).

Exercises

In Exercises 1-3, verify that the functions are solutions of the one

dimensional wave equation (26.7) for a suitable value of a.

1. u = sin ωt sinωx

2. u = x2 + 4t2

3. u = e−t sin 3x

In Exercises 4-6, verify that the functions are solution of the

heat equation (26.8) for a suitable value of α
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4. u = e−2t cosx

5. u = e−t sin 3x

6. u = e−4t cosωx

In Exercises 7-12, verify that the following functions are so-

lutions of Laplace’s equation (26.9).

7. u = 2xy

8. u = ex sin y

9. u = tan 1(y/x)

10. u = x3 − 3xy2

11. u = sin x sinh y

12. u = x4 − 6x2y2 + y4

13. State the one dimensional wave equation. Show that the

function u(x, t) = v(x+ ct) + w(x− ct) is a solution of the

wave equation, where u and v are any twice differentiable

functions.

14. Show that u = (x2 + y2 + z2)−1/2 is a solution of the three

dimensional Laplace’s equation.

In Exercises 15 and 16, solve the following equation where u

is a function of two variables x and y.

15. ux + 2xu = 0 16. ux = 2xyu

In Exercises 17 and 18, setting ux = p, solve

17. uxy = 0

18. uxy + ux = 0

Solve the following systems of partial differential equations.
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19. ux = 0, uy = 0

20. . uxx = 0, uxy = 0

21. . uxx = 0, uxy = 0, uyy = 0

Answers

1. a = ±1

3. a = ±1
3 i

5. a = ±1
3

14. Hint: ∂2u
∂x2 = 3x2(x2 + y2 + z2)−5/2 − (x2 + y2 + z2)−3/2.

Similarly, or by symmetry obtain ∂2u
∂y2 ,

∂2u
∂z2 .

15. u = f(y)e−x

16. u = f(y)exy

17. u =
∫
f(x)dx+ g(y))

18. e−y
∫
f(x)dx+ g(y))

20. u = cx+ f(y)

21. u = ax+ by + c



Chapter 27
The Heat Equation

One of the partial differential equations that occur frequently

in applied mathematics is the heat equation. We describe the

equation and solve the equation under some conditions.

27.1 Heat Conduction Equation

We consider the temperature u in a long thin bar or wire of

constant cross section and homogeneous material which is oriented

along the x-axis and is perfectly insulated laterally, so that heat

flows in the x -direction only. Then u depends only on the axial

coordinate x and time t, so that u = u(x, t). Also suppose that

x = 0 and x = L are the axial coordinates corresponding to the

ends of the bar.

490
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Figure 27.1: A heat-conducting solid bar

The variation of temperature in the bar is governed by the

following partial differential equation:

α2uxx = ut, 0 < x < L, t > 0. (27.1)

The above equation is called heat conduction equation or one-

dimensional heat equation. In the above α2 depends only on

the material from which the bar is made and is defined by

α2 =
κ

ρs
,

where κ is the thermal conductivity, ρ is the density and s is the

specific heat of the material of the body.

Solution of Heat Conduction Equation with Boundary

and Initial Conditions

Now we shall solve the heat equation (27.1) for some important

types of boundary and initial conditions.
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The heat conduction equation is

α2u xx = ut, 0 < x < L, t > 0. (27.1)

Let us start with the case when the ends x = 0 and x = L of the

bar are kept at temperature zero. Then the boundary conditions

are

u(0, t) = 0, u(L, t) = 0, t > 0. (27.2)

Let f(x) be the initial temperature (i.e., temperature at timet = 0)

in the bar at the point with axial coordinate x. Then the initial

condition is

u(x, 0) = f(x). (27.3)

We shall determine a solution u(x, t) of (27.1) satisfying (27.2)

and (27.3).

We assume that u(x, t) = X(x)T (t).

Then using (27.2), for t > 0

u(0, t) = X(0)T (t) = 0 u(L, t) = X(L)T (t) = 0.

i.e.,

X(0)T (t) = 0 = X(L)T (t) for t > 0.

The above says that either T (t) = 0 for t > 0 or X(0) = 0 =

X(L). The first case is of no interest as T (t) = 0 implies u(x, t) =

X(x)T (t) = X(x)0 = 0 which means the temperature on the bar



27.1. HEAT CONDUCTION EQUATION 493

Figure 27.2: Boundary value problem for the wave equation.

is always zero. Hence hereinafter we consider the case

X(0) = 0 = X(L). (27.4)

Now we shall proceed step by step, as follows.

Step 1. By applying the product method1, or method of separat-

ing variables, we shall obtain two ordinary differential equation.

Step 2. We shall determine solutions of those two equations that

satisfy the boundary conditions.

Step 3. Those solutions will be composed so that the result will

be a solution of the heat equation (27.1), satisfying also the given

initial condition.
1Product Method (or Method of Separating Variables) is discussed in the

previous chapter.
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The details are as follows.

Step 1 Applying the method of separation of variables we first

determine solutions of (27.1) that satisfy the boundary conditions

(27.2). We start from

u(x, t) = X(x)T (t). (27.5)

Substituting this expression into (27.1), we obtain the equation

α2X ′′ T = XṪ

where primes denote derivatives with respect to x and dots denote

derivatives with respect to t. To separate variables, we divide the

equation by α2X T, and obtain

X ′′

X
=

1
α2

Ṫ

T
.

The expression on the left depends only on t, while the right

side depends only on x. We conclude that both expressions must

be equal to a constant, say, k. 2

That is,
X ′′

X
=

1
α2

Ṫ

T
= k.

2REASON: If the expression on the left is not constant, then changing x
will presumably change the value of this expression but certainly not that on
the right, since the latter does not depend on x. Similarly, if the expression
on the right is not constant, changing y will presumably change the value of
this expression but certainly not that on the left.
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Hence we obtain two ordinary differential equations,

X ′′ − kX = 0 (27.6)

and

Ṫ − α2kT = 0. (27.7)

Case 1) If k = 0, then (27.6) becomes

X ′′ = 0.

Integrating (with respect to x ),

X ′ = a,

where a is an arbitrary constant. One more integration (with

respect to x ) yields

X = X(x) = ax+ b,

where b is also an arbitrary constant.

By (27.4), X(0) = 0, and hence the above implies b = 0. Hence

the above reduces to

X = X(x) = ax.

Again by (27.4), X(L) = 0, hence the above implies aL = 0 which
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implies a = 0. Hence the above reduces to

X = X(x) = 0.

This means that

u(x, t) = X(x)T (t) = 0T (t) = 0

which means the temperature on the bar is always zero. Hence we

ruled out the case k = 0.

Case 2) If k > 0, say k = µ2, then the characteristic equation

corresponding to the second order ordinary differential equation

(27.6) is

λ2 − µ2 = 0

i.e.,

λ2 = µ2.

Hence the general solution of (27.6) is

X(x) = Aeµx +Be−µx.

For the convenience of applying boundary conditions, recalling

the definitions of hyperbolic sine and cosine functions, we write

the above general solution as

X(x) = c1 cosh µx+ c2 sinh µx.
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By (27.4), X(0) = 0, and hence the above implies

c1 = 0.

Thus

X(x) = c2 sinh µx.

Also by (2A), X(L) = 0, and hence the above implies

c2 sin hµL = 0

Since µ 6= 0, sinh µL 6= 0,, hence we have c2 = 0. Hence

X(x) = 0.

This means that

u(x, t) = X(x)T (t) = 0T (t) = 0

which means the temperature on the bar is always zero. Hence we

ruled out the case k > 0.

Case 3) Hence we are left with the possibility of choosing k, neg-

ative, say, k = −λ, with λ > 0then equations (27.6) and (27.7)

takes the form

X ′′ + λX = 0 (27.8)

and

Ṫ + α2λT = 0. (27.9)



498 CHAPTER 27. THE HEAT EQUATION

If we take λ = µ2, then k = −µ2, so that we can also write

equations (27.6) and (27.7) in the form

X ′′ + µ2X = 0 (27.10)

and

Ṫ + α2µ2T = 0. (27.11)

Step 2 Consider equation (27.10). Its general solution is

X(x) = A cosµx+B sinµx. (27.12)

From the boundary conditions (27.4), it follows that

X(0) = A = 0 .

Hence

X(x) = B sinµx.

Again by (27.4),

X(L) = B sinµL = 0.

Two cases arise: either B = 0 or sinµL = 0.

The case of B = 0 leads to X(x) = 0 for 0 ≤ x ≤ L, so that

u(x, t) = X(x)T (t) = X(x)0 = 0



27.1. HEAT CONDUCTION EQUATION 499

which is no of interest. Hence we take

sinµL = 0.

This implies

µL = nπ , n = 1, 2, 3, . . .

or

µ =
nπ

L
, n = 1, 2, 3, . . .

Hence the only nontrivial solutions of Eq. (27.10) with boundary

conditions (2A) and (2B) are the eigen functions.3

Xn(x) = sin
nπx

L
, n = 1, 2, 3, . . .

associated with the eigen values

λn =
n2π2

L2
, n = 1, 2, 3, . . . (27.13)

Substituting n2π2

L2 for λ, Eq.(27.13) takes the form

Ṫ +
n2π2α2

L2
T = 0. (27.14)

The general solution of the first order differential equation (27.14)

3 Ref. section eigen value problems in chapter “ Two point Boundary Value
Problems”.
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is

Tn(t) = Bn exp
(
−n

2π2α2t

L2

)
, n = 1, 2, . . . (27.15)

where Bn is arbitrary constant. Neglecting the arbitrary constants

of proportionality, we conclude that the functions

un(x, t) = e−n2π2α2t/L2
sin

nπx

L
, n = 1, 2, . . . (27.16)

are solutions of the heat equation (27.1), satisfying the boundary

conditions (27.2).

Step 3 Now we have to obtain a solution that also satisfying the

initial condition (27.3)

u(x, 0) = f(x).

For this we form linear combinations of a set of fundamental solu-

tions and then choose the coefficients to satisfy the initial condi-

tions. Hence we form a linear combination of the functions (27.16)

and then choose the coefficients to satisfy Eq.(27.3). Here there

are infinitely many functions (27.16), so a general linear combina-

tion of them is an infinite series of the following form

u(x, t) =
∞∑

n=1

cnun(x, t) =
∞∑

n=1

cne
−n2π2α2t/L2

sin
nπx

L
. . . (27.17)

where the coefficients are to be determined.

We assume that the infinite series of Eq.(27.17) converges and
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also satisfies Eqs.(27.1) and (27.2). To satisfy the initial condition

(27.3), we must have (with t = 0).

u(x, 0) =
∞∑

n=1

cn sin
nπx

L
= f(x). . . . (27.18)

Hence, for (27.18) to satisfy (27.3), the coefficients cn must be

chosen such that u(x, 0) becomes a half-range expansion off(x),

namely, the Fourier sine series off(x). In that case,

cn =
2
L

∫ L

0
f(x) sin

nπx

L
dx, n = 1, 2, . . . . . . (27.19)

The solution of our problem can be established, assuming that

f(x) is piecewise continuous on the interval0 ≤ x ≤ L, and has

one-sided derivatives at all interior points of that interval. Under

these assumptions, the series (27.17) with coefficients given by

(27.19) is the solution of the given heat problem with the given

boundary and initial conditions.

Example 1 Find the temperature u(x, t) in a long thin bar of

length L units with uniform cross section and homogeneous ma-

terial and is insulated laterally, so that heat flows only in the

direction of the bar, if the ends x = 0 and x = L of the bar are

kept at zero temperature and the initial temperature is

f(x) =

x when 0<x< L
2

L−x when L
2

<x<L
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Solution

cn =
2
L

{∫ L/2

0
x sin

nπx

L
dx+

∫ L

L/2
(L− x) sin

nπx

L
dx

}

= 4L
n2π2 sin nπ

2 , on simplification.

Hence

cn =


4L

n2π2 , when n = 1, 5, 9, ...

− 4L
n2π2 , when n = 3, 7, 11, ..

0, when n is even

.

Putting the above values of cn in (27.17), the solution is

u(x, t) =
4L
π2

[
sin

πx

L
e−π2α2t/L2 − 1

9
sin

3πx
l
e−9π2α2t/L2

+ . . .

]
Example 2 Find the temperature u(x, t) in a metal rod of length

50 cm long with uniform cross section and homogeneous material

and is insulated laterally, so that heat flows only in the direction

of the bar, if the ends of the bar are kept at zero temperature and

the initial temperature is 20◦C.

Solution

Here L = 50 and f(x) = 20 for 0 < x < 50. Thus,

u(x, t) =
∞∑

n=1

cne
−n2π2α2t/2500 sin

nπx

50

where

cn =
2
50

∫ 50

0
20 sin

nπx

50
dx
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=
40
nπ

(1− cosnπ)

=

{
80
nπ , when n odd

0, when n even

Hence

u(x, t) =
80
π

[
sin

πx

50
e−π2α2t/2500 +

1
3

sin
3πx
50

e−9π2α2t/2500 + · · ·
]

Exercises

In Exercises 1-4, find the temperature u(x,t) in a bar of silver

(length 10 cm, constant cross section of area 1 cm2, density 10.6

gm/cm3, thermal conductivity 1.04. cal/cm deg sec. Specific heat

0.056 cal/gm deg) which is perfectly insulated laterally, whose

ends are kept at temperature 0oC, and whose initial temperature

(in oC) is f (x ), where

1. f(x) = sin 0.1x

2. f(x) =

 x, if 0 < x < 5

10− x, if 5 < x < 10

3. f(x) =

 x, if 0 < x < 5

0, if 5 < x < 10

4. f(x) = x(10− x)

In Exercises 5-9, find the temperature u(x, t) in a bar of

length L = π which is perfectly insulated, also at the ends
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at x = 0 and x = L assuming that u(x,0 ) = f (x ), where

f(x) is given by

5. f(x) = 1

6. f(x) = x2

7. f(x) = 0.5 cos 2x

8. f(x) = sinx

9. f(x) =

 x, if 0 < x < π/2

π − x, if π/2 < x < π.

Consider the conduction of heat in a rod 40 cm in length

whose ends are maintained at 0◦C for all t > 0. In each of

Exercises 10 through 13 find an expression for the tempera-

ture u(x, t) if the initial temperature distribution in the rod

is the given function. Suppose that α2 = 1.

10. u(x, 0) = 50, 0 < x < 40

11. u(x, 0) =

{
x, 0 ≤ x < 20

40− x, 20 ≤ x ≤ 40

12. u(x, 0) = x, 0 < x < 40

13. u(x, 0) =


0, 0 ≤ x < 10

50, 10 ≤ x ≤ 30

0, 30 < x ≤ 40
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14. Find the solution of the heat conduction problem

uxx = 4ut, 0 < x < 2, t > 0;

u(0, t) = 0, u(2, t) = 0, t > 0;

u(x, 0) = 2 sin(πx/2)− sinπx+ 4 sin 2πx, 0 ≤ x ≤ 2.

15. Find the solution of the heat conduction problem

100uxx = ut, 0 < x < 1, t > 0;

u(0, t) = 0, u(1, t) = 0, t > 0;

u(x, 0) = 2(sin 2πx− sin 5πx), 0 ≤ x ≤ 1.

Answers

1. u(x, t) = sin 0.1πxe−1.752π2t/100

2. u(x, t) = 40
π2

(
sin 0.1πxe−0.0175π2t − 1

9 sin 0.3πxe−0.0175(3π)2t + ...
)

4. u(x, t) = 800
π3

(
sin 0.1πxe−0.0175π2t + 1

33 sin 0.3πxe−0.0175(3π)2t +−...
)

5. u(x, t) = 1

7. 0.5 cos 2x e−4t

9. u(x, t) = π
4 −

8
π

(
1
4 cos 2te−4t + 1

36 cos 6te−36t + ...
)

10. u(x, t) = 100
π

∑∞
n=1

1−cos nπ
n e−n2π2t/1600 sin nπx

40
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11. u(x, t) = 160
π2

∑∞
n=1

sin (nπ/2)
n2 e−n2π2t/1600 sin nπx

40

12. u(x, t) = 80
π

∑∞
n=1

(−1)n+1

n2 e−n2π2t/1600 sin nπx
40

13. u(x, t) = 100
π

∑∞
n=1

cos(nπ/4)−cos(3nπ/4)
n e−n2π2t/1600 sin nπx

40

14. u(x, t) = 2e−π2t/16 sin(πx/2)−e−π2t/4 sinπx+4e−π2t sin 2πx

15. u(x, t) = (e−400π2t sin 2πx− e−2500π2t sin 5πx) · 2



Chapter 28
Vibrating String-Wave

Equation

28.1 Vibrating String-Wave Equation

One of the partial differential equations that occurs frequently in

applied mathematics is the wave equation. In this chapter we

first describe one dimensional wave equation and then consider its

solution.

Suppose that an elastic string of the length L is tightly stretched

between two supports at the same horizontal level, so that the

x -axis lies along the string (Fig. 28.1) Let u(x, t) denote the

vertical displacement experienced by the string at the point x at

time t. We also make the following assumptions.

507
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Figure 28.1: A vibrating string

1. The mass of the string per unit length is constant (homo-

geneous string). The string is perfectly elastic and does not

offer any resistance to bending.

2. The tension caused by stretching the string before fixing it at

the endpoints is so large that the action of the gravitational

force on the string can be neglected.

3. The string performs a small transverse motion in a vertical

plane, that is, every particle of the string moves strictly ver-

tically and so that the deflection and the slope at every point

of the string remain small in absolute value.

Then u(x, t) satisfies the partial differential equation

a2uxx = utt (28.1)

in the domain 0 < x < L, t > 0. Eq.(28.1) is known as the

one-dimensional wave equation. The constant coefficient a2
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in Eq.(28.1) is given by

a2 =
T

ρ
,

where T is the tension (force) in the string, and ρ is the mass per

unit length of the string material. a has the units of length/time;

i.e., a has the units of velocity.

Since the string is fixed at the ends x = 0 and x = L, we have

the two boundary conditions

u(0, t) = 0, u(L, t) = 0 for t > 0. (28.2)

Figure 28.2: Boundary value problem for the wave equation.

The form of the motion of the string will depend on the initial
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deflection (deflection at time t = 0) and on the initial velocity

(velocity at time t = 0.) Denoting the initial deflection by

f(x) and the initial velocity by g(x ), we have the two initial

conditions

u(x, 0) = f(x), 0 ≤ x ≤ L (28.3)

and

ut(x, 0) = g(x), 0 ≤ x ≤ L. (28.4)

In order for Eqs. (28.2), (28.3), and (28.4) to be consistent, it is

also necessary to require that

f(0) = f(L) = 0, g(0) = g(L) = 0. (28.5)

Solution to the wave equation by separation of variables

(Product Method)

We now find the value of u(x, t) that satisfy the one-dimensional

wave equation given by

a2uxx = utt (28.1)

and satisfying the two boundary conditions given by

u(0, t) = 0, u(L, t) = 0 for t > 0. (28.6)

and the two initial conditions given by

u(x, 0) = f(x), 0 ≤ x ≤ L (28.7)
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and

ut(x, 0) = 0, 0 ≤ x ≤ L. (28.8)

[Eq.(28.8) means the initial velocity is 0. Here g(x) = 0.]

Step 1. The product method yields solutions of equation (28.1)

of the form

u(x, t) = X(x)T (t) (28.9)

which is a product of two functions X(x)and T (t), each depending

only one of the variables x and t, respectively.

Differentiating (28.9) twice with respect tox, we obtain

uxx = X ′′T,

where primes denote derivatives with respect to x. Differentiating

(28.9) twice with respect tot, we obtain

utt = X T̈ ,

where dots denote derivatives with respect to t. By inserting this

into the differential equation (28.1), we obtain

a2X ′′T = X T̈

Division by a2XT yields

X ′′

X
=

1
a2

T̈

T
.
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The expression on the left involves function depending only on

t while the expression on the right involves function depending

only on x. Hence both expression must be equal to a constant.

Thus,
X ′′

X
=

1
a2

T̈

T
= −λ,

where λ is arbitrary. This yield immediately two second order

ordinary linear differential equations, viz.

X ′′ + λX = 0 (28.10)

and

T̈ + a2λT = 0. (28.11)

Step 2 We shall now determine solutions X and T of (28.10) and

(28.11) so that u given by (28.9) satisfies the boundary conditions

(28.6).

By substituting from Eq.(28.9) for u(x, t) in the boundary con-

ditions (28.6) (28.7), we find that X(x)must satisfy the boundary

conditions

X(0) = 0, X(L) = 0. (28.12)

Also, by substituting from Eq.(28.9) for u(x, t) in the initial con-

dition (28.8), we find that T (t)must satisfy the initial condition

X(0) = 0, X(L) = 0. (28.13)

Step3. We now determine X(x), T (t), and λ by solving Eq.
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(28.10) subject to the boundary conditions (28.12) and Eq.(28.11)

subject to the initial condition (28.13).

The problem of solving the differential equation (28.10) subject

to the boundary conditions (28.12) is precisely the same problem

that arose in the previous chapter in connection with heat con-

duction equation. Thus we can use the results obtained there and

at the end of the chapter Two Point Boundary Value Problems.

Using those results, the problem (28.10) subject to (28.12) has

nontrivial solutions if and only if λ is an eigen value

λ =
n2π2

L2
for n = 1, 2, 3, . . . (28.14)

andX(x)is proportional to the corresponding eigen function sin nπx
L .

Using the values of λ given by Eq.(28.14) in Eq.(28.11), we

obtain

T̈ +
n2π2a2

L2
T = 0. (28.15)

Hence

T (t) = k1 cos
nπat

L
+ k2 sin

nπat

L
, (28.16)

where k1 and k2 are arbitrary constants. The initial condition

(28.13) requires that k2 = 0. Hence

T (t) = k1 cos
nπat

L
.

Neglecting the arbitrary constants of proportionality, we conclude
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that the functions

un(x, t) = sin
nπx

L
cos

nπat

L
, n = 1, 2, 3, . . . (28.17)

satisfy the partial differential equation (28.1), the boundary con-

ditions (28.6), and the initial condition (28.8). These functions

are the fundamental solutions for the given problem.

To satisfy the remaining (nonhomogeneous) initial condition

(28.7), we consider a superposition (linear combination) of the fun-

damental solutions (28.8) with properly chosen coefficients. Thus

we assume that

u(x, t) has the form

u(x, t) =
∞∑

n=1

cnun(x, t) =
∞∑

n=1

cn sin
nπx

L
cos

nπat

L
, (28.18)

where the constants cn are to be determined. The initial condition

(28.7) requires that

u(x, 0) =
∞∑

n=1

cn sin
nπx

L
= f(x). (28.19)

Hence, in order that (28.18) satisfy (28.7), the coefficients cn

must be chosen so that u(x, 0)becomes a half-range expansion

off(x), namely, the half range Fourier sine series off(x); we

obtain the Fourier coefficients as

cn =
2
L

∫ L

0
f(x) sin

nπx

L
dx, n = 1, 2, 3, . . . (28.20)
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It follows that u(x, t) given by (28.18), with coefficients (28.20) is

a solution of (28.1) that satisfies the conditions (28.6) to (28.8),

provided that the series (28.18) converges and also that the series

obtained by differentiating (28.18) twice (term wise) with respect

to x and t converge and have the sums uxx and utt respectively,

which are continuous.

For a fixed value of n the expression cos nπat
L in Eq.(28.17)

is periodic in time with the period 2L
na . The quantities nπa

L for

n = 1, 2, 3, . . . are the natural frequencies of the string – that

is, the frequencies at which the string will freely vibrate. The

factor sin nπx
L represents the displacement pattern occuring in the

string when it is executing vibrations of the given frequency. Each

displacement pattern is called a natural mode of vibration and is

periodic in the space variable x ; the spatial period 2L
n is called the

wavelength of the mode of frequency nπa
L . Thus the eigen values

n2π2

L2 are proportional to the squares of the natural frequencies,

and the eigen functions sin nπx
L give the natural modes.

Example 1 (Vibrating string if the initial deflection is triangular)

Find the solution of the wave equation (28.1) subject to the con-

ditions (28.6) to (28.8), where it is given the triangular initial

deflection

f(x) =


2k
L

x, when 0<x< L
2

2k
L

(L−x), when L
2

<x<L

and the initial velocity zero.

We solve the problem by finding u(x, t) given by (28.18), with
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coefficients (28.20):

cn =
2
L

∫ L

0
f(x) sin

nπx

L
dx

=
2
L

{∫ L/2

0

2k
L
x sin

nπx

L
dx+

∫ L

L/2

2k
L

(L− x) sin
nπx

L
dx

}

= 8k
π2n2 sin nπ

2 , on simplification.

Hence,

u(x, t) =
∞∑

n=1

8k
π2n2

sin
nπ

2
sin

nπx

L
cos

nπat

l

i.e.,

u(x, t) =
8k
π2

[
1
12

sin
πx

L
cos

πat

L
− 1

32
sin

3πx
L

cos
3πat
L

+ · · ·
]

Example 2 A string is stretched and fastened at two points L

apart. Motion is started by displacing the string in the form

u = u(x, t) = a sin
πx

l

from which it is released at time t = 0. Show that the displacement

at any point at a distance x from one end at time t is given by

u = a sin
πx

l
cos

πct

l
.

Solution
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Here initial deflection is

u(x, 0) = f(x) = a sin
πx

l
,

and initial velocity is

g(x) = 0.

Hence, we solve the problem by finding u(x, t) given by (28.18),

with coefficients (28.20):

cn =
2
L

∫ L

0
a sin

πx

l
sin

nπx

l
dx

=

{
a for n = 1

0 for n 6= 1
, on simplification.

Substituting these values in (28.18), we obtain

u = u(x, t) = a sin
πx

l
cos

πct

l
,

proving the result.

Example 3 Consider a vibrating string of length L = 30 that

satisfies the wave equation

4uxx = utt, 0 < x < 30, t > 0.

Assume that the ends of the string are fixed and that the string
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is set in motion with no initial velocity from the initial position

u(x, 0) = f(x) =

{
x
10 , 0 ≤ x ≤ 10
30−x

20 , 10 < x ≤ 30

Find the displacement u(x, t)of the string and describe its motion

through one period.

Solution

Here a = 2 and L = 30. Hence the solution is given by

u(x, t) =
∞∑

n=1

cn sin
nπx

30
cos

2nπt
30

where

cn =
2
30

{∫ 10

0

x

10
sin

nπx

30
dx+

∫ 30

10

30− x

20
sin

nπx

30
dx

}
= 9

n2π2 sin nπ
3 , n = 1, 2, . . . (on simplification)

Justification of the Solution

The solution given by (28.18) with coefficients cn given by (28.20)

is purely a formal expression. Now for the justification of whether

Eq.(28.18) actually represents the solution of the given problem

requires some further investigation. We establish the validity of

Eq.(28.18) indirectly.

First we will show that Eq.(28.18) is equivalent to

u(x, t) =
1
2

[h(x− at) + h(x+ at)] , (28.21)
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where h is the odd 2L periodic extension of the function f . [This

is obtained as follows: First take the odd extension to (−L, L)

of the function f defined on [0, L]. Then extend the so obtained

function to the entire real line by defining at other values of x as

a period function of period 2L.] That is,

h(x) =

{
f(x), 0 ≤ x ≤ L,

−f(−x), −L < x < 0;
(28.22)

and

h(x+ 2L) = h(x).

Being the odd 2L periodic extension of the function f , the

function h has the half range Fourier sine series representation of

f(x). Hence, using Eq.(28.19), we can write h as

h(x) =
∞∑

n=1

cn sin
nπx

L
, (28.23)

where cn is given by (28.20)

cn =
2
L

∫ L

0
f(x) sin

nπx

L
dx, n = 1, 2, 3, . . .

Now recalling the trigonometric identity

sin(A−B) = sinA cosB − cosA sinB,
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we have

h(x− at) =
∞∑

n=1

cn sin
nπ(x− at)

L
=

∞∑
n=1

cn sin
(
nπx

L
− nπat

L

)

=
∞∑

n=1

cn

(
sin

nπx

L
cos

nπat

L
− cos

nπx

L
sin

nπat

L

)
and using the trigonometric identity

sin(A+B) = sinA cosB + cosA sinB,

we have

h(x+ at) =
∞∑

n=1

cn sin
nπ(x+ at)

L
=

∞∑
n=1

cn sin
(
nπx

L
+
nπat

L

)

=
∞∑

n=1

cn

(
sin

nπx

L
cos

nπat

L
+ cos

nπx

L
sin

nπat

L

)
.

Adding the above two equations, we obtain

h(x− at) + h(x+ at) = 2
∞∑

n=1

cn sin
nπx

L
cos

nπat

L
,

so using (28.18), we have

h(x− at) + h(x+ at) = 2u(x, t),

and this establishes Eq.(28.21).
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From Eq.(28.21) we see that u(x, t) is continuous for 0 < x <

L, t > 0, provided that h is continuous on the interval (−∞, ∞).

This requires f to be continuous on the original interval [0, L].

Similarly, u is twice continuously differentiable with respect to

either variable in 0 < x < L, t > 0, provided that h is twice con-

tinuously differentiable on (−∞, ∞). This requires f ′ and f ′′ to be

continuous on [0, L]. Furthermore, since h′′ is the odd extension

of f ′′, we must also have f ′′(0) = f ′′(L) = 0. However, since h′ is

the even extension of f ′, no further conditions are required on f ′.

Provided that these conditions are met, uxx and uttcan be com-

puted from Eq.(28.21), and it can be shown that these derivatives

satisfy the wave equation.

Solution to the General Problem for the Elastic String

1. We now find the value of u(x, t) that satisfy the one-dimensional

wave equation given by

a2uxx = utt

satisfying the two boundary conditions given by

u(0, t) = 0, u(L, t) = 0 for t > 0.

and the two initial conditions given by

u(x, 0) = 0, 0 ≤ x ≤ L (28.24)

and

ut(x, 0) = g(x), 0 ≤ x ≤ L. (28.25)
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where g(x)is the initial velocity at the point x of the string.

The solution of the new problem can be obtained by following

the procedure described above for the problem (28.1), satisfying

(28.6), (28.7), and (28.8). By separating variables, we find that

the problem for X(x)is exactly the same as before. Thus, once

again, λ = n2π2

L2 and X(x) is proportional to the corresponding

eigen function sin nπx
L . The differential equation for T (t)is again

Eq.(28.15)

T̈ +
n2π2a2

L2
T = 0,

but with the initial condition

T (0) = 0, 0 ≤ x ≤ L. (28.26)

corresponding to the initial condition u(x, 0) = 0.

The general solution of Eq.(28.15) is given by (28.16)

T (t) = k1 cos
nπat

L
+ k2 sin

nπat

L
,

but now the initial condition (28.26) requires that k1 = 0. Hence

T (t) = k2 sin
nπat

L
,

and hence the fundamental solutions for the problem (28.1), (28.6),

and (28.7) are

un(x, t) = sin
nπx

L
sin

nπat

L
, n = 1, 2, 3, . . . (28.27)
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Each of the functions un(x, t) satisfies the wave equation (28.1),

the boundary conditions (28.7), and the initial condition (28.24).

To satisfy the remaining initial condition (28.25), we assume

that u(x, t)can be expressed as a linear combination of the fun-

damental solutions (28.27); that is,

u(x, t) =
∞∑

n=1

knun(x, t) =
∞∑

n=1

kn sin
nπx

L
sin

nπat

L
. (28.28)

To determine the values of the coefficients kn, we differentiate Eq.

(28.28) with respect to t, set t = 0, and use the initial condition

(28.25), and obtain the equation

ut(x, 0) =
∞∑

n=1

nπa

L
kn sin

nπx

L
= g(x). (28.29)

The above is Fourier sine series of period 2L for the functiong.

Hence the coefficients are given by

nπa

L
kn =

2
L

∫ L

0
g(x) sin

nπx

L
dx, n = 1, 2, 3, . . . (28.30)

Thus Eq.(28.28) , with the coefficients given by Eq.(28.30), consti-

tutes a solution to the problem of Eqs.(28.1), (28.6), (28.24) and

(28.25).

Use of Principle of Superposition

We now find the value of u(x, t) that satisfy the one-dimensional
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wave equation given by

a2uxx = utt

satisfying the two boundary conditions given by

u(0, t) = 0, u(L, t) = 0 for t > 0.

and the two initial conditions given by

u(x, 0) = f(x), 0 ≤ x ≤ L (28.31)

and

ut(x, 0) = g(x), 0 ≤ x ≤ L. (28.32)

where f(x) and g(x) are the initial position and velocity, respec-

tively, at the point x of the string.

Although this problem can be solved by separating variables,

as in the cases discussed so far, it is important to note that it can

also be solved simply by adding together the two solutions that

we obtained above (This is possible by the use of principle of su-

perposition.) To verify that this is true, let v(x, t) be the solution

of the problem (28.1), satisfying (28.6), (28.7), and (28.8), and

let w(x, t) be the solution of the problem of Eqs.(28.1), (28.6),

(28.24) and (28.25). Thus v(x, t) is given by (28.18), with co-

efficients (28.20), and w(x, t) is given by Eq.(28.27), with the

coefficients given by Eq.(28.30).

Now let

u(x, t) = v(x, t) + w(x, t).
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First, we observe that

a2uxx − utt = (a2vxx − vtt) + (a2wxx − wtt) = 0 + 0 = 0, (28.33)

so u(x, t)satisfies the wave equation (28.1). Next, we have

u(0, t) = v(0, t) + w(0, t) = 0 + 0 = 0,

and

u(L, t) = v(L, t) + w(L, t) = 0 + 0 = 0.


(28.34)

so u(x, t)also satisfies the boundary conditions (28.2). Finally, we

have

u(x, 0) = v(x, 0) + w(x, 0) = f(x) + 0 = f(x), (28.35)

and

ut(x, 0) = vt(x, 0) + wt(x, 0) = 0 + g(x) = g(x). (28.36)

Thus u(x, t) satisfies the general initial conditions (28.31) and

(28.32).

Exercises

In Exercises 1-8, find the solutions u(x, y) of the following equa-

tions by separating variables (product method).

1. ux + uy = 0

2. ux − yuy = 0

3. ux + uy = 2(x+ y)u

4. uxy − u = 0
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5. ux − uy = 0

6. uxx + uyy = 0

7. x2uxy − 3y2u = 0

8. xux − yuy = 0

9. xuxx + 2ut = 0

10. tuxx + xut = 0

11. xuxx + uxt + ut = 0

12. uxx + uyy + xu = 0

13. uxx + (x+ y)uyy = 0

14. [p(x)ux]x − r(x)utt = 0

In Exercises 15-18, find the deflection u(x, t) of the vibrating

string (length L = πends fixed, anda2 = T
ρ = 1) correspond-

ing to zero initial velocity and initial deflection.

15. 0.02sinx

16. k(sinx− sin 2x)

17. k(πx− x2)

18. k(π2x− x3)

In Exercises 19-20, find the deflection u(x, t) of the vibrating

string (lengthL = π, ends fixed, anda2 = T
ρ = 1) if the initial

deflection f(x) and the initial velocity g(x ) are:

19. f(x) = 0, g(x) = 0.1 sin 2x

20. f(x) = 0.1 sinx, g(x) = −0.2 sinx

21. Solve the one dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
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subject to the boundary conditions

u(0, t) = 0, u(l, t) = 0

and the initial conditions

u(x, 0) = f(x ) and ∂u
∂t

∣∣
t=0

= g(x) for all t,

where f(x) is a given function and l is a constant.

22. A string is stretched and fastened to two points l apart.

Motion is started by displacing the string in the form u =

a sin πx
l from which it is released at time t = 0. Show that

the displacement at any point at a distance x from one end

at time t is given by

u = u(x, t) = a sin
πx

l
cos

πct

l
.

*Hint to the Exercise 22: Given the initial displacement

u(x, 0) = a sin πx
l , initial velocity (i.e. velocity at time t = 0

is ∂u
∂t

∣∣
t=0

= 0.

Answers

1. u(x, y = kec(x−y)

2. u(x, y) = kycecx

3. u(x, y) = kex
2+y2+c(x−y)

4. u(x, y) = kecx+ y
c

9. xF ′′ − kF = 0, 2Ġ+ kG = 0 with u(x, t) = F (x)G(t)

10. F ′′ − kxF = 0, Ġ+ k tG = 0 with u(x, t) = F (x)G(t)
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11. F ′′ − k(F ′ + F ) = 0, Ġ+ kG = 0 with u(x, t) = F (x)G(t)

12. F ′′ + (x+ k)F = 0, G̈− kG = 0 with u(x, y) = F (x)G(y)

13. Not separable

14. [p(x)F ′]′+k r(x)F = 0, G̈+kG = 0 with u(x, t) = F (x)G(t)

15. u(x, t) = 0.02 cos t sinx

16. u(x, t) = k(cos t sinx− cos 2t sin 2x)

17. u(x, t) = 8k
π

[
cos t sinx− 1

33 cos 3t sin 3x+ . . .
]

18. u(x, t) = 12k
[
cos t sinx− 1

23 cos 2t sin 2x+ . . .
]
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Aims, Objectives and Outcomes

Differential equations model the physical world around us. Many
of the laws or principles governing natural phenomenon are state-
ments or relations involving rate at which one quantity changes
with respect to another. The mathematical formulation of such
relations (modelling) often results in an equation involving deriva-
tive (differential equations). The course is intended to find out
ways and means for solving differential equations and the topic has
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wide range of applications in physics, chemistry, biology, medicine,
economics and engineering.

On successful completion of the course, the students shall ac-
quire the following skills/knowledge.

• Students could identify a number of areas where the mod-
elling process results in a differential equation.

• They will learn what an ODE is, what it means by its solu-
tion, how to classify DEs, what it means by an IVP and so
on.

• They will learn to solve DEs that are in linear, separable
and in exact forms and also to analyse the solution.

• They will realise the basic differences between linear and non
linear DEs and also basic results that guarantees a solution
in each case.

• They will learn a method to approximate the solution suc-
cessively of a first order IVP.

• They will become familiar with the theory and method of
solving a second order linear homogeneous and nonhomoge-
neous equation with constant coefficients.

• They will learn to find out a series solution for homogeneous
equations with variable coefficients near ordinary points.

• Students acquire the knowledge of solving a differential equa-
tion using Laplace method which is especially suitable to
deal with problems arising in engineering field.

• Students learn the technique of solving partial differential
equations using the method of separation of variables

Syllabus
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Text: Elementary Differential Equations and Boundary Value Prob-
lems (11/e): William E Boyce, Richard C Diprima And Douglas
B Meade John Wiley and Sons(2017) ISBN: 1119169879
Module-I (22 hrs) 1.1: Some Basic Mathematical Models; Di-
rection Fields
1.2: Solutions of some Differential equations
1.3: Classification of Differential Equations
2.1: Linear Differential Equations; Method of Integrating Factors
2.2: Separable Differential Equations
2.3: Modelling with First Order Differential Equations
2.4: Differences Between Linear and Nonlinear Differential Equa-
tions
2.6: Exact Differential Equations and Integrating Factors
2.8: The Existence and Uniqueness Theorem (proof omitted)
Module-II (23 hrs)
3.1: Homogeneous Differential Equations with Constant Coeffi-
cients
3.2: Solutions of Linear Homogeneous Equations; the Wronskian
3.3: Complex Roots of the Characteristic Equation
3.4: Repeated Roots; Reduction of Order
3.5: Nonhomogeneous Equations; Method of Undetermined Coef-
ficients
3.6: Variation of Parameters
5.2: Series solution near an ordinary point, part1
5.3: Series solution near an ordinary point,part2
Module-III (15 hrs)
6.1: Definition of the Laplace Transform
6.2: Solution of Initial Value Problems
6.3: Step Functions
6.5: Impulse Functions
6.6: The Convolution Integral
Module-IV (20 hrs)
10.1: Two-Point Boundary Value Problems



532 Syllabus

10.2: Fourier Series
10.3: The Fourier Convergence Theorem
10.4: Even and Odd Functions
10.5: Separation of Variables; Heat Conduction in a Rod
10.7: The Wave Equation: Vibrations of an Elastic String
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